{"title":"鱼肠中的一氧化氮","authors":"Catharina Olsson, Susanne Holmgren","doi":"10.1016/S0300-9629(97)00025-X","DOIUrl":null,"url":null,"abstract":"<div><p>Nitric oxide synthase-positive nerve cells have been found in most vertebrate classes and also some invertebrates, indicating an early evolutionary origin for the enzyme and its function as a neurotransmitter. The general distribution and inhibitory effect on motility of nitric oxide in the fish gut agrees well with studies from other vertebrates, but details may vary between species, suggesting variations in function. The coexistence with vasoactive intestinal polypeptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) suggests a co-function in fish as in mammals, but this remains to be confirmed.</p></div>","PeriodicalId":10612,"journal":{"name":"Comparative Biochemistry and Physiology Part A: Physiology","volume":"118 4","pages":"Pages 959-964"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00025-X","citationCount":"32","resultStr":"{\"title\":\"Nitric oxide in the fish gut\",\"authors\":\"Catharina Olsson, Susanne Holmgren\",\"doi\":\"10.1016/S0300-9629(97)00025-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitric oxide synthase-positive nerve cells have been found in most vertebrate classes and also some invertebrates, indicating an early evolutionary origin for the enzyme and its function as a neurotransmitter. The general distribution and inhibitory effect on motility of nitric oxide in the fish gut agrees well with studies from other vertebrates, but details may vary between species, suggesting variations in function. The coexistence with vasoactive intestinal polypeptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) suggests a co-function in fish as in mammals, but this remains to be confirmed.</p></div>\",\"PeriodicalId\":10612,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part A: Physiology\",\"volume\":\"118 4\",\"pages\":\"Pages 959-964\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00025-X\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part A: Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030096299700025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part A: Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030096299700025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nitric oxide synthase-positive nerve cells have been found in most vertebrate classes and also some invertebrates, indicating an early evolutionary origin for the enzyme and its function as a neurotransmitter. The general distribution and inhibitory effect on motility of nitric oxide in the fish gut agrees well with studies from other vertebrates, but details may vary between species, suggesting variations in function. The coexistence with vasoactive intestinal polypeptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) suggests a co-function in fish as in mammals, but this remains to be confirmed.