哺乳动物冬眠中的代谢调节:酶和蛋白质适应

Kenneth B. Storey
{"title":"哺乳动物冬眠中的代谢调节:酶和蛋白质适应","authors":"Kenneth B. Storey","doi":"10.1016/S0300-9629(97)00238-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mammalian hibernation requires specific regulatory controls on metabolism to coordinate entry, maintenance, and arousal stages, as well as adjustments to many metabolic functions to support long-term dormancy. Several mechanisms of metabolic regulation are involved in potentiating survival. One of these is the reversible phosphorylation of regulatory enzymes, including glycogen phosphorylase, phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. In particular, the sharp suppression of pyruvate dehydrogenase during hibernation shows the importance of control over mitochondrial oxidative metabolism for reducing metabolic rate. Fine control over specific enzymes also occurs via differential temperature effects on kinetic and allosteric properties. Analysis of temperature effects on the properties of pyruvate kinase, fructose-1,6-bisphosphatase, creatine kinase, and citrate synthase from ground squirrel or bat tissues shows a range of responses, some that would reduce enzyme activity in the hibernating state and some that would promote temperature-insensitive enzyme function. Reduced tissue phosphagen and adenylate levels, but not energy charge, may also contribute to overall metabolic suppression. New research is exploring the role of transcriptional and translational controls in hibernation via several approaches. For example, immunoblotting with antibodies to heat shock proteins (hsp 70 family) revealed the presence of constitutive hsc 70 in bat tissues but levels of the protein did not change between euthermic and hibernating states and neither the inducible hsp 70 nor the glucose-responsive protein grp 78 appeared during hibernation.</p></div>","PeriodicalId":10612,"journal":{"name":"Comparative Biochemistry and Physiology Part A: Physiology","volume":"118 4","pages":"Pages 1115-1124"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00238-7","citationCount":"135","resultStr":"{\"title\":\"Metabolic regulation in mammalian hibernation: Enzyme and protein adaptations\",\"authors\":\"Kenneth B. Storey\",\"doi\":\"10.1016/S0300-9629(97)00238-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mammalian hibernation requires specific regulatory controls on metabolism to coordinate entry, maintenance, and arousal stages, as well as adjustments to many metabolic functions to support long-term dormancy. Several mechanisms of metabolic regulation are involved in potentiating survival. One of these is the reversible phosphorylation of regulatory enzymes, including glycogen phosphorylase, phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. In particular, the sharp suppression of pyruvate dehydrogenase during hibernation shows the importance of control over mitochondrial oxidative metabolism for reducing metabolic rate. Fine control over specific enzymes also occurs via differential temperature effects on kinetic and allosteric properties. Analysis of temperature effects on the properties of pyruvate kinase, fructose-1,6-bisphosphatase, creatine kinase, and citrate synthase from ground squirrel or bat tissues shows a range of responses, some that would reduce enzyme activity in the hibernating state and some that would promote temperature-insensitive enzyme function. Reduced tissue phosphagen and adenylate levels, but not energy charge, may also contribute to overall metabolic suppression. New research is exploring the role of transcriptional and translational controls in hibernation via several approaches. For example, immunoblotting with antibodies to heat shock proteins (hsp 70 family) revealed the presence of constitutive hsc 70 in bat tissues but levels of the protein did not change between euthermic and hibernating states and neither the inducible hsp 70 nor the glucose-responsive protein grp 78 appeared during hibernation.</p></div>\",\"PeriodicalId\":10612,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part A: Physiology\",\"volume\":\"118 4\",\"pages\":\"Pages 1115-1124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00238-7\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part A: Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300962997002387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part A: Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300962997002387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

哺乳动物冬眠需要特定的代谢调节控制来协调进入、维持和觉醒阶段,以及调节许多代谢功能以支持长期休眠。几种代谢调节机制参与了增强生存的过程。其中之一是调节酶的可逆磷酸化,包括糖原磷酸化酶、磷酸果糖激酶、丙酮酸激酶和丙酮酸脱氢酶。特别是,冬眠期间丙酮酸脱氢酶的急剧抑制表明控制线粒体氧化代谢对降低代谢率的重要性。对特定酶的精细控制也通过对动力学和变构性质的温差效应发生。分析温度对地鼠和蝙蝠组织中丙酮酸激酶、果糖-1,6-二磷酸酶、肌酸激酶和柠檬酸合成酶性质的影响,发现了一系列的反应,有些会降低冬眠状态下的酶活性,有些会促进温度不敏感酶的功能。降低组织的磷酸根和腺苷酸水平,但不是能量电荷,也可能有助于整体代谢抑制。新的研究正在通过几种方法探索转录和翻译控制在冬眠中的作用。例如,热休克蛋白(热休克蛋白70家族)抗体的免疫印迹显示,蝙蝠组织中存在组成性热休克蛋白70,但在恒温和冬眠状态下,该蛋白的水平没有变化,在冬眠期间,诱导性热休克蛋白70和葡萄糖反应蛋白grp 78都没有出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic regulation in mammalian hibernation: Enzyme and protein adaptations

Mammalian hibernation requires specific regulatory controls on metabolism to coordinate entry, maintenance, and arousal stages, as well as adjustments to many metabolic functions to support long-term dormancy. Several mechanisms of metabolic regulation are involved in potentiating survival. One of these is the reversible phosphorylation of regulatory enzymes, including glycogen phosphorylase, phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. In particular, the sharp suppression of pyruvate dehydrogenase during hibernation shows the importance of control over mitochondrial oxidative metabolism for reducing metabolic rate. Fine control over specific enzymes also occurs via differential temperature effects on kinetic and allosteric properties. Analysis of temperature effects on the properties of pyruvate kinase, fructose-1,6-bisphosphatase, creatine kinase, and citrate synthase from ground squirrel or bat tissues shows a range of responses, some that would reduce enzyme activity in the hibernating state and some that would promote temperature-insensitive enzyme function. Reduced tissue phosphagen and adenylate levels, but not energy charge, may also contribute to overall metabolic suppression. New research is exploring the role of transcriptional and translational controls in hibernation via several approaches. For example, immunoblotting with antibodies to heat shock proteins (hsp 70 family) revealed the presence of constitutive hsc 70 in bat tissues but levels of the protein did not change between euthermic and hibernating states and neither the inducible hsp 70 nor the glucose-responsive protein grp 78 appeared during hibernation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Keyword index Pigment cell signalling for physiological color change Response of frog and toad skin to norepinephrine Effect of temperature on the activities of glucose-6-phosphate dehydrogenase and hexokinase in entomopathogenic nematodes (Nematoda: Steinernematidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1