{"title":"脑内一氧化氮的比较及其作为脑血管舒张剂的作用","authors":"Göran E. Nilsson, Veronica Söderström","doi":"10.1016/S0300-9629(97)00024-8","DOIUrl":null,"url":null,"abstract":"<div><p>Histological studies have detected nitric oxide (NO) synthase in the central nervous system of all vertebrates examined, from lampreys to mamals. However, there are still very few comparative physiological studies on the function of NO synthase in the brain of non-mammalian vertebrates. So far, we know that acetylcholine can cause an NO-dependent increase in brain blood flow in turtles and some fish species (crucian carp and rainbow trout), whereas some other fishes appear to lack such a mechanism. Hypercapnia can induce NO-dependent cerebral vasodilation in mammals, but such a mechanism appears to be lacking in the ectothermic vertebrates examined. The number of species studied needs to be expanded before we can draw any firm conclusions about the origin of NO-dependent brain blood flow regulation: if it has evolved more than once or if it has been occasionally lost during evolution. We conclude that NO synthase may be present in all vertebrate brains but that its functions can vary, as judged from its role in cerebral blood flow regulation. The diversity of functions that NO has proven to have within the mammalian brain is likely to be paralleled by the same degree of diversity of function between vertebrate groups.</p></div>","PeriodicalId":10612,"journal":{"name":"Comparative Biochemistry and Physiology Part A: Physiology","volume":"118 4","pages":"Pages 949-958"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00024-8","citationCount":"33","resultStr":"{\"title\":\"Comparative aspects on nitric oxide in brain and its role as a cerebral vasodilator\",\"authors\":\"Göran E. Nilsson, Veronica Söderström\",\"doi\":\"10.1016/S0300-9629(97)00024-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Histological studies have detected nitric oxide (NO) synthase in the central nervous system of all vertebrates examined, from lampreys to mamals. However, there are still very few comparative physiological studies on the function of NO synthase in the brain of non-mammalian vertebrates. So far, we know that acetylcholine can cause an NO-dependent increase in brain blood flow in turtles and some fish species (crucian carp and rainbow trout), whereas some other fishes appear to lack such a mechanism. Hypercapnia can induce NO-dependent cerebral vasodilation in mammals, but such a mechanism appears to be lacking in the ectothermic vertebrates examined. The number of species studied needs to be expanded before we can draw any firm conclusions about the origin of NO-dependent brain blood flow regulation: if it has evolved more than once or if it has been occasionally lost during evolution. We conclude that NO synthase may be present in all vertebrate brains but that its functions can vary, as judged from its role in cerebral blood flow regulation. The diversity of functions that NO has proven to have within the mammalian brain is likely to be paralleled by the same degree of diversity of function between vertebrate groups.</p></div>\",\"PeriodicalId\":10612,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part A: Physiology\",\"volume\":\"118 4\",\"pages\":\"Pages 949-958\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00024-8\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part A: Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300962997000248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part A: Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300962997000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative aspects on nitric oxide in brain and its role as a cerebral vasodilator
Histological studies have detected nitric oxide (NO) synthase in the central nervous system of all vertebrates examined, from lampreys to mamals. However, there are still very few comparative physiological studies on the function of NO synthase in the brain of non-mammalian vertebrates. So far, we know that acetylcholine can cause an NO-dependent increase in brain blood flow in turtles and some fish species (crucian carp and rainbow trout), whereas some other fishes appear to lack such a mechanism. Hypercapnia can induce NO-dependent cerebral vasodilation in mammals, but such a mechanism appears to be lacking in the ectothermic vertebrates examined. The number of species studied needs to be expanded before we can draw any firm conclusions about the origin of NO-dependent brain blood flow regulation: if it has evolved more than once or if it has been occasionally lost during evolution. We conclude that NO synthase may be present in all vertebrate brains but that its functions can vary, as judged from its role in cerebral blood flow regulation. The diversity of functions that NO has proven to have within the mammalian brain is likely to be paralleled by the same degree of diversity of function between vertebrate groups.