{"title":"细胞器运输的细胞周期调控。","authors":"A M Robertson, V J Allan","doi":"10.1007/978-1-4615-5371-7_6","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule- and actin-based motors play a wide range of vital roles in the organisation and function of cells during both interphase and mitosis, all of which are likely to be under strict control. Here, we describe how one of these roles--the movement of membranes--is regulated through the cell cycle. Organelle movement in many species is greatly reduced in mitosis as compared to interphase, and this change occurs concomitantly with an inhibition of most membrane traffic functions. Data from in vitro studies is shedding light on how microtubule motor regulation may be achieved.</p>","PeriodicalId":79529,"journal":{"name":"Progress in cell cycle research","volume":"3 ","pages":"59-75"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cell cycle regulation of organelle transport.\",\"authors\":\"A M Robertson, V J Allan\",\"doi\":\"10.1007/978-1-4615-5371-7_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubule- and actin-based motors play a wide range of vital roles in the organisation and function of cells during both interphase and mitosis, all of which are likely to be under strict control. Here, we describe how one of these roles--the movement of membranes--is regulated through the cell cycle. Organelle movement in many species is greatly reduced in mitosis as compared to interphase, and this change occurs concomitantly with an inhibition of most membrane traffic functions. Data from in vitro studies is shedding light on how microtubule motor regulation may be achieved.</p>\",\"PeriodicalId\":79529,\"journal\":{\"name\":\"Progress in cell cycle research\",\"volume\":\"3 \",\"pages\":\"59-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in cell cycle research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-4615-5371-7_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in cell cycle research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-4615-5371-7_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microtubule- and actin-based motors play a wide range of vital roles in the organisation and function of cells during both interphase and mitosis, all of which are likely to be under strict control. Here, we describe how one of these roles--the movement of membranes--is regulated through the cell cycle. Organelle movement in many species is greatly reduced in mitosis as compared to interphase, and this change occurs concomitantly with an inhibition of most membrane traffic functions. Data from in vitro studies is shedding light on how microtubule motor regulation may be achieved.