{"title":"脊椎动物体细胞中有丝分裂和控制有丝分裂进程的检查点。","authors":"C L Rieder, A Khodjakov","doi":"10.1007/978-1-4615-5371-7_24","DOIUrl":null,"url":null,"abstract":"<p><p>During mitosis in vertebrates the sister kinetochores on each replicated chromosome interact with two separating arrays of astral microtubules to form a bipolar spindle that produces and/or directs the forces for chromosome motion. In order to ensure faithful chromosome segregation cells have evolved mechanisms that delay progress into and out of mitosis until certain events are completed. At least two of these mitotic \"checkpoint controls\" can be identified in vertebrates. The first prevents nuclear envelope breakdown, and thus spindle formation, when the integrity of some nuclear component(s) is compromised. The second prevents chromosome disjunction and exit from mitosis until all of the kinetochores are attached to the spindle.</p>","PeriodicalId":79529,"journal":{"name":"Progress in cell cycle research","volume":"3 ","pages":"301-12"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Mitosis and checkpoints that control progression through mitosis in vertebrate somatic cells.\",\"authors\":\"C L Rieder, A Khodjakov\",\"doi\":\"10.1007/978-1-4615-5371-7_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During mitosis in vertebrates the sister kinetochores on each replicated chromosome interact with two separating arrays of astral microtubules to form a bipolar spindle that produces and/or directs the forces for chromosome motion. In order to ensure faithful chromosome segregation cells have evolved mechanisms that delay progress into and out of mitosis until certain events are completed. At least two of these mitotic \\\"checkpoint controls\\\" can be identified in vertebrates. The first prevents nuclear envelope breakdown, and thus spindle formation, when the integrity of some nuclear component(s) is compromised. The second prevents chromosome disjunction and exit from mitosis until all of the kinetochores are attached to the spindle.</p>\",\"PeriodicalId\":79529,\"journal\":{\"name\":\"Progress in cell cycle research\",\"volume\":\"3 \",\"pages\":\"301-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in cell cycle research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-4615-5371-7_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in cell cycle research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-4615-5371-7_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitosis and checkpoints that control progression through mitosis in vertebrate somatic cells.
During mitosis in vertebrates the sister kinetochores on each replicated chromosome interact with two separating arrays of astral microtubules to form a bipolar spindle that produces and/or directs the forces for chromosome motion. In order to ensure faithful chromosome segregation cells have evolved mechanisms that delay progress into and out of mitosis until certain events are completed. At least two of these mitotic "checkpoint controls" can be identified in vertebrates. The first prevents nuclear envelope breakdown, and thus spindle formation, when the integrity of some nuclear component(s) is compromised. The second prevents chromosome disjunction and exit from mitosis until all of the kinetochores are attached to the spindle.