B A Teicher, G Ara, D Buxton, J Leonard, R G Schaub
{"title":"白细胞介素-12和分级放疗在小鼠Lewis肺癌中的最佳调度。","authors":"B A Teicher, G Ara, D Buxton, J Leonard, R G Schaub","doi":"10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-12 (IL-12), a naturally occurring cytokine, has demonstrated antitumor activity in several murine solid tumors. The Lewis lung carcinoma was used to study the most effective scheduling of recombinant murine interleukin-12 (rmIL-12) administration with fractionated radiation therapy. The effect of the schedule of rmIL-12 administration alone or along with a 1- or 2-week fractionated radiation therapy regimen was examined. Beginning rmIL-12 prior to or at the same time as radiation therapy and extending rmIL-12 through the radiation regimen and beyond produced the longest tumor growth delays. Those treatment regimens which were most effective against the primary tumor were also most effective in decreasing the number of lung metastases on day 20. To further assess the immunotherapeutic effects from rmIL-12 administration, the efficacy of rmIL-12 with fractionated radiation therapy delivered to a right hind-limb tumor was measured as tumor growth delay in an unirradiated left hind-limb tumor. There was some difference in the tumor growth delay between the unirradiated tumor in the animals bearing an irradiated tumor in the contralateral leg, and the tumors in animals receiving rmIL-12 only. Recombinant murine granulocyte-macrophage-colony stimulating factor (rmGM-CSF) was also an antitumor agent active against the Lewis lung carcinoma and produced an additive effect in combination with fractionated radiation therapy in this tumor. rmIL-12 was a radiation sensitizer in the Lewis lung carcinoma. When rmIL-12 (45-microg/kg) and rmGM-CSF (45 microg/kg) were administered together with fractionated radiation therapy, a marked increase in tumor growth delay resulted. This treatment combination also nearly ablated lung metastases on day 20 in these animals. These results may serve as a useful guide in developing clinical protocols, including rmIL-12 and fractionated radiation therapy.</p>","PeriodicalId":20894,"journal":{"name":"Radiation oncology investigations","volume":"6 2","pages":"71-80"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E","citationCount":"20","resultStr":"{\"title\":\"Optimal scheduling of interleukin-12 and fractionated radiation therapy in the murine Lewis lung carcinoma.\",\"authors\":\"B A Teicher, G Ara, D Buxton, J Leonard, R G Schaub\",\"doi\":\"10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-12 (IL-12), a naturally occurring cytokine, has demonstrated antitumor activity in several murine solid tumors. The Lewis lung carcinoma was used to study the most effective scheduling of recombinant murine interleukin-12 (rmIL-12) administration with fractionated radiation therapy. The effect of the schedule of rmIL-12 administration alone or along with a 1- or 2-week fractionated radiation therapy regimen was examined. Beginning rmIL-12 prior to or at the same time as radiation therapy and extending rmIL-12 through the radiation regimen and beyond produced the longest tumor growth delays. Those treatment regimens which were most effective against the primary tumor were also most effective in decreasing the number of lung metastases on day 20. To further assess the immunotherapeutic effects from rmIL-12 administration, the efficacy of rmIL-12 with fractionated radiation therapy delivered to a right hind-limb tumor was measured as tumor growth delay in an unirradiated left hind-limb tumor. There was some difference in the tumor growth delay between the unirradiated tumor in the animals bearing an irradiated tumor in the contralateral leg, and the tumors in animals receiving rmIL-12 only. Recombinant murine granulocyte-macrophage-colony stimulating factor (rmGM-CSF) was also an antitumor agent active against the Lewis lung carcinoma and produced an additive effect in combination with fractionated radiation therapy in this tumor. rmIL-12 was a radiation sensitizer in the Lewis lung carcinoma. When rmIL-12 (45-microg/kg) and rmGM-CSF (45 microg/kg) were administered together with fractionated radiation therapy, a marked increase in tumor growth delay resulted. This treatment combination also nearly ablated lung metastases on day 20 in these animals. These results may serve as a useful guide in developing clinical protocols, including rmIL-12 and fractionated radiation therapy.</p>\",\"PeriodicalId\":20894,\"journal\":{\"name\":\"Radiation oncology investigations\",\"volume\":\"6 2\",\"pages\":\"71-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation oncology investigations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation oncology investigations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal scheduling of interleukin-12 and fractionated radiation therapy in the murine Lewis lung carcinoma.
Interleukin-12 (IL-12), a naturally occurring cytokine, has demonstrated antitumor activity in several murine solid tumors. The Lewis lung carcinoma was used to study the most effective scheduling of recombinant murine interleukin-12 (rmIL-12) administration with fractionated radiation therapy. The effect of the schedule of rmIL-12 administration alone or along with a 1- or 2-week fractionated radiation therapy regimen was examined. Beginning rmIL-12 prior to or at the same time as radiation therapy and extending rmIL-12 through the radiation regimen and beyond produced the longest tumor growth delays. Those treatment regimens which were most effective against the primary tumor were also most effective in decreasing the number of lung metastases on day 20. To further assess the immunotherapeutic effects from rmIL-12 administration, the efficacy of rmIL-12 with fractionated radiation therapy delivered to a right hind-limb tumor was measured as tumor growth delay in an unirradiated left hind-limb tumor. There was some difference in the tumor growth delay between the unirradiated tumor in the animals bearing an irradiated tumor in the contralateral leg, and the tumors in animals receiving rmIL-12 only. Recombinant murine granulocyte-macrophage-colony stimulating factor (rmGM-CSF) was also an antitumor agent active against the Lewis lung carcinoma and produced an additive effect in combination with fractionated radiation therapy in this tumor. rmIL-12 was a radiation sensitizer in the Lewis lung carcinoma. When rmIL-12 (45-microg/kg) and rmGM-CSF (45 microg/kg) were administered together with fractionated radiation therapy, a marked increase in tumor growth delay resulted. This treatment combination also nearly ablated lung metastases on day 20 in these animals. These results may serve as a useful guide in developing clinical protocols, including rmIL-12 and fractionated radiation therapy.