PhD Robert R. Wolfe (Professor of Surgery and Anesthesiology)
{"title":"脓毒症/创伤患者的底物利用/胰岛素抵抗","authors":"PhD Robert R. Wolfe (Professor of Surgery and Anesthesiology)","doi":"10.1016/S0950-351X(97)80926-3","DOIUrl":null,"url":null,"abstract":"<div><p>Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.</p></div>","PeriodicalId":77027,"journal":{"name":"Bailliere's clinical endocrinology and metabolism","volume":"11 4","pages":"Pages 645-657"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0950-351X(97)80926-3","citationCount":"84","resultStr":"{\"title\":\"Substrate utilization/insulin resistance in sepsis/trauma\",\"authors\":\"PhD Robert R. Wolfe (Professor of Surgery and Anesthesiology)\",\"doi\":\"10.1016/S0950-351X(97)80926-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.</p></div>\",\"PeriodicalId\":77027,\"journal\":{\"name\":\"Bailliere's clinical endocrinology and metabolism\",\"volume\":\"11 4\",\"pages\":\"Pages 645-657\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0950-351X(97)80926-3\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bailliere's clinical endocrinology and metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950351X97809263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bailliere's clinical endocrinology and metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950351X97809263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Substrate utilization/insulin resistance in sepsis/trauma
Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.