{"title":"应用体感诱发电位的头-脑-脑模型偶极示踪法进行初级体感觉皮层的手术前功能定位","authors":"S Mine , N Oka , A Yamaura , Y Nakajima","doi":"10.1016/S0168-5597(97)00083-X","DOIUrl":null,"url":null,"abstract":"<div><p><span>The aim of the present study was to explore the utility of dipole tracing (DT) of a scalp-skull-brain (SSB) head model in preoperative functional localization of the human brain. Nine patients who underwent surgery of mass lesions around the central sulcus (CS) were employed. By using SSB/DT, dipole source location of early cortical components of the </span>somatosensory evoked potential<span> (SEP) was estimated before surgery. Motor cortex, CS and primary somatosensory cortex<span> were determined by cortical SEP during surgery. After surgery precise functional mapping was reproduced in MRI, and the accuracy of DT was evaluated by measuring the distance between estimated dipole source and the posterior bank of the CS. We defined this distance as localization error of DT. In 4 cases without structural change around the sensorimotor cortex, localization error ranged from 1 to 4 mm with an average of 2 mm. In 5 cases with structural alteration of sensorimotor cortex, localization error ranged from 6 to 10 mm with an average of 8 mm. The difference in localization error between the two groups was statistically significant, and may have been caused by changes of conductance near sensorimotor cortex in the latter group. Functional localization by DT was accurate and useful. But localization error could not be ignored in cases with structural alteration in the sensorimotor cortex.</span></span></p></div>","PeriodicalId":100401,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section","volume":"108 3","pages":"Pages 226-233"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0168-5597(97)00083-X","citationCount":"15","resultStr":"{\"title\":\"Presurgical functional localization of primary somatosensory cortex by dipole tracing method of scalp-skull-brain head model applied to somatosensory evoked potential\",\"authors\":\"S Mine , N Oka , A Yamaura , Y Nakajima\",\"doi\":\"10.1016/S0168-5597(97)00083-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The aim of the present study was to explore the utility of dipole tracing (DT) of a scalp-skull-brain (SSB) head model in preoperative functional localization of the human brain. Nine patients who underwent surgery of mass lesions around the central sulcus (CS) were employed. By using SSB/DT, dipole source location of early cortical components of the </span>somatosensory evoked potential<span> (SEP) was estimated before surgery. Motor cortex, CS and primary somatosensory cortex<span> were determined by cortical SEP during surgery. After surgery precise functional mapping was reproduced in MRI, and the accuracy of DT was evaluated by measuring the distance between estimated dipole source and the posterior bank of the CS. We defined this distance as localization error of DT. In 4 cases without structural change around the sensorimotor cortex, localization error ranged from 1 to 4 mm with an average of 2 mm. In 5 cases with structural alteration of sensorimotor cortex, localization error ranged from 6 to 10 mm with an average of 8 mm. The difference in localization error between the two groups was statistically significant, and may have been caused by changes of conductance near sensorimotor cortex in the latter group. Functional localization by DT was accurate and useful. But localization error could not be ignored in cases with structural alteration in the sensorimotor cortex.</span></span></p></div>\",\"PeriodicalId\":100401,\"journal\":{\"name\":\"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section\",\"volume\":\"108 3\",\"pages\":\"Pages 226-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0168-5597(97)00083-X\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016855979700083X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016855979700083X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Presurgical functional localization of primary somatosensory cortex by dipole tracing method of scalp-skull-brain head model applied to somatosensory evoked potential
The aim of the present study was to explore the utility of dipole tracing (DT) of a scalp-skull-brain (SSB) head model in preoperative functional localization of the human brain. Nine patients who underwent surgery of mass lesions around the central sulcus (CS) were employed. By using SSB/DT, dipole source location of early cortical components of the somatosensory evoked potential (SEP) was estimated before surgery. Motor cortex, CS and primary somatosensory cortex were determined by cortical SEP during surgery. After surgery precise functional mapping was reproduced in MRI, and the accuracy of DT was evaluated by measuring the distance between estimated dipole source and the posterior bank of the CS. We defined this distance as localization error of DT. In 4 cases without structural change around the sensorimotor cortex, localization error ranged from 1 to 4 mm with an average of 2 mm. In 5 cases with structural alteration of sensorimotor cortex, localization error ranged from 6 to 10 mm with an average of 8 mm. The difference in localization error between the two groups was statistically significant, and may have been caused by changes of conductance near sensorimotor cortex in the latter group. Functional localization by DT was accurate and useful. But localization error could not be ignored in cases with structural alteration in the sensorimotor cortex.