{"title":"来自NMR的蛋白质动力学。","authors":"L E Kay","doi":"10.1038/755","DOIUrl":null,"url":null,"abstract":"<p><p>In the past several years a significant number of new multidimensional NMR methods have been developed to study molecular dynamics spanning a wide range of time scales. Applications involving a large number of biological systems have emerged and correlations with function established. Unique insights are obtained that are not available from structure alone, indicating the importance of dynamics studies for understanding function.</p>","PeriodicalId":18848,"journal":{"name":"Nature Structural Biology","volume":"5 Suppl ","pages":"513-7"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/755","citationCount":"174","resultStr":"{\"title\":\"Protein dynamics from NMR.\",\"authors\":\"L E Kay\",\"doi\":\"10.1038/755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past several years a significant number of new multidimensional NMR methods have been developed to study molecular dynamics spanning a wide range of time scales. Applications involving a large number of biological systems have emerged and correlations with function established. Unique insights are obtained that are not available from structure alone, indicating the importance of dynamics studies for understanding function.</p>\",\"PeriodicalId\":18848,\"journal\":{\"name\":\"Nature Structural Biology\",\"volume\":\"5 Suppl \",\"pages\":\"513-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/755\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the past several years a significant number of new multidimensional NMR methods have been developed to study molecular dynamics spanning a wide range of time scales. Applications involving a large number of biological systems have emerged and correlations with function established. Unique insights are obtained that are not available from structure alone, indicating the importance of dynamics studies for understanding function.