一种研究小鼠膝关节滑膜微循环的新模型。

A Veihelmann, G Szczesny, D Nolte, F Krombach, H J Refior, K Messmer
{"title":"一种研究小鼠膝关节滑膜微循环的新模型。","authors":"A Veihelmann,&nbsp;G Szczesny,&nbsp;D Nolte,&nbsp;F Krombach,&nbsp;H J Refior,&nbsp;K Messmer","doi":"10.1007/s004330050088","DOIUrl":null,"url":null,"abstract":"<p><p>A novel model for the investigation of the microcirculation in synovial tissue of the mouse knee joint is presented. The mouse knee joint was exposed on a specially designed plexiglass stage with a slight flexion. After partial resection of the skin, the patella tendon was cut transversally, which allowed for visualization of the \"Hoffa's fatty body\", an intraarticular fatty tissue containing synovial cells on the interior surface of the joint. An intravital fluorescence microscope was adjusted to observe the microcirculation of this intraarticular synovial tissue without opening of the joint capsula. For staining of the plasma, fluorescein isothiocyanate (FITC)-dextran was used, and for the staining of leukocytes rhodamine 6G was used. The tissue investigated presents with a high-density honeycomb-like capillary network, containing some postcapillary venules and a few arterioles. The following parameters were assessed off-line using a computer-assisted microcirculation analysis system: flow and diameter of arterioles and postcapillary venules, as well as functional capillary density. Moreover, leukocyte-endothelial cell interaction was quantified by counting the number of rolling cells and cells adhering to the endothelium in postcapillary venules. As an indication of endothelial leakage, macromolecular extravasation was also assessed. To validate the model, we investigated these parameters at three time points during an observation period of 60 min. There was no change in functional capillary density, nor in vessel diameter after 60 min of observation. Moreover, there was neither a change in the number of rolling cells, nor in the number of cells adhering to the endothelium nor in extravasation of FITC-dextran, thus indicating the stability of the preparation. The new model allows the quantitative analysis of the intraarticular microcirculation of the synovial fatty tissue in vivo. It provides insight into the dynamics of synovial microcirculation and leukocyte-endothelial cell interaction in acute or chronic joint inflammation.</p>","PeriodicalId":76421,"journal":{"name":"Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie","volume":"198 1","pages":"43-54"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004330050088","citationCount":"57","resultStr":"{\"title\":\"A novel model for the study of synovial microcirculation in the mouse knee joint in vivo.\",\"authors\":\"A Veihelmann,&nbsp;G Szczesny,&nbsp;D Nolte,&nbsp;F Krombach,&nbsp;H J Refior,&nbsp;K Messmer\",\"doi\":\"10.1007/s004330050088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel model for the investigation of the microcirculation in synovial tissue of the mouse knee joint is presented. The mouse knee joint was exposed on a specially designed plexiglass stage with a slight flexion. After partial resection of the skin, the patella tendon was cut transversally, which allowed for visualization of the \\\"Hoffa's fatty body\\\", an intraarticular fatty tissue containing synovial cells on the interior surface of the joint. An intravital fluorescence microscope was adjusted to observe the microcirculation of this intraarticular synovial tissue without opening of the joint capsula. For staining of the plasma, fluorescein isothiocyanate (FITC)-dextran was used, and for the staining of leukocytes rhodamine 6G was used. The tissue investigated presents with a high-density honeycomb-like capillary network, containing some postcapillary venules and a few arterioles. The following parameters were assessed off-line using a computer-assisted microcirculation analysis system: flow and diameter of arterioles and postcapillary venules, as well as functional capillary density. Moreover, leukocyte-endothelial cell interaction was quantified by counting the number of rolling cells and cells adhering to the endothelium in postcapillary venules. As an indication of endothelial leakage, macromolecular extravasation was also assessed. To validate the model, we investigated these parameters at three time points during an observation period of 60 min. There was no change in functional capillary density, nor in vessel diameter after 60 min of observation. Moreover, there was neither a change in the number of rolling cells, nor in the number of cells adhering to the endothelium nor in extravasation of FITC-dextran, thus indicating the stability of the preparation. The new model allows the quantitative analysis of the intraarticular microcirculation of the synovial fatty tissue in vivo. It provides insight into the dynamics of synovial microcirculation and leukocyte-endothelial cell interaction in acute or chronic joint inflammation.</p>\",\"PeriodicalId\":76421,\"journal\":{\"name\":\"Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie\",\"volume\":\"198 1\",\"pages\":\"43-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004330050088\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004330050088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004330050088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

提出了一种研究小鼠膝关节滑膜组织微循环的新模型。将小鼠膝关节暴露在一个特殊设计的有机玻璃平台上,并轻微弯曲。部分切除皮肤后,横向切开髌骨肌腱,可见“Hoffa脂肪体”,这是一种关节内脂肪组织,在关节内表面含有滑膜细胞。在不打开关节囊的情况下,调整活体荧光显微镜观察关节内滑膜组织的微循环。血浆染色用异硫氰酸荧光素-葡聚糖,白细胞染色用罗丹明6G。所研究的组织呈高密度蜂窝状毛细血管网,包含一些毛细血管后小静脉和少数小动脉。使用计算机辅助微循环分析系统离线评估以下参数:小动脉和毛细血管后小静脉的流量和直径,以及功能性毛细血管密度。此外,通过计数毛细血管后小静脉中滚动细胞和粘附内皮细胞的数量来量化白细胞与内皮细胞的相互作用。作为内皮渗漏的指征,大分子外渗也被评估。为了验证模型,我们在三个时间点观察了这些参数,观察时间为60分钟。观察60分钟后,功能毛细血管密度和血管直径没有变化。同时,fitc -葡聚糖的滚动细胞数、黏附内皮细胞数和外渗量均未发生变化,说明该制剂具有稳定性。新模型允许定量分析体内滑膜脂肪组织的关节内微循环。它提供了洞察滑膜微循环和白细胞内皮细胞相互作用的动态在急性或慢性关节炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel model for the study of synovial microcirculation in the mouse knee joint in vivo.

A novel model for the investigation of the microcirculation in synovial tissue of the mouse knee joint is presented. The mouse knee joint was exposed on a specially designed plexiglass stage with a slight flexion. After partial resection of the skin, the patella tendon was cut transversally, which allowed for visualization of the "Hoffa's fatty body", an intraarticular fatty tissue containing synovial cells on the interior surface of the joint. An intravital fluorescence microscope was adjusted to observe the microcirculation of this intraarticular synovial tissue without opening of the joint capsula. For staining of the plasma, fluorescein isothiocyanate (FITC)-dextran was used, and for the staining of leukocytes rhodamine 6G was used. The tissue investigated presents with a high-density honeycomb-like capillary network, containing some postcapillary venules and a few arterioles. The following parameters were assessed off-line using a computer-assisted microcirculation analysis system: flow and diameter of arterioles and postcapillary venules, as well as functional capillary density. Moreover, leukocyte-endothelial cell interaction was quantified by counting the number of rolling cells and cells adhering to the endothelium in postcapillary venules. As an indication of endothelial leakage, macromolecular extravasation was also assessed. To validate the model, we investigated these parameters at three time points during an observation period of 60 min. There was no change in functional capillary density, nor in vessel diameter after 60 min of observation. Moreover, there was neither a change in the number of rolling cells, nor in the number of cells adhering to the endothelium nor in extravasation of FITC-dextran, thus indicating the stability of the preparation. The new model allows the quantitative analysis of the intraarticular microcirculation of the synovial fatty tissue in vivo. It provides insight into the dynamics of synovial microcirculation and leukocyte-endothelial cell interaction in acute or chronic joint inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biosynthetic response of cultured articular chondrocytes to mechanical vibration. Heat-shock preconditioning reduces oxidative protein denaturation and ameliorates liver injury by carbon tetrachloride in rats. Coronary vasomotor disorders during hypoxia-reoxygenation: do calcium channel blockers play a protective role? One-lung flooding for video-assisted thoracoscopic surgery in animal experiments on pigs--oxygenation and intrapulmonary shunt. Cellular distribution and phototoxicity of benzoporphyrin derivative and Photofrin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1