检测多维度:哪种残差数据类型效果最好?

Journal of outcome measurement Pub Date : 1998-01-01
J M Linacre
{"title":"检测多维度:哪种残差数据类型效果最好?","authors":"J M Linacre","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Factor analysis is a powerful technique for investigating multidimensionality in observational data, but it fails to construct interval measures. Rasch analysis constructs interval measures, but only indirectly flags the presence of multidimensional structures. Simulation studies indicate that, for responses to complete tests, construction of Rasch measures from the observational data, followed by principal components factor analysis of Rasch residuals, provides an effective means of identifying multidimensionality. The most diagnostically useful residual form was found to be the standardized residual. The multidimensional structure of the Functional Independence Measure (FIMSM) is confirmed by means of Rasch analysis followed by factor analysis of standardized residuals.</p>","PeriodicalId":79673,"journal":{"name":"Journal of outcome measurement","volume":"2 3","pages":"266-83"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting multidimensionality: which residual data-type works best?\",\"authors\":\"J M Linacre\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Factor analysis is a powerful technique for investigating multidimensionality in observational data, but it fails to construct interval measures. Rasch analysis constructs interval measures, but only indirectly flags the presence of multidimensional structures. Simulation studies indicate that, for responses to complete tests, construction of Rasch measures from the observational data, followed by principal components factor analysis of Rasch residuals, provides an effective means of identifying multidimensionality. The most diagnostically useful residual form was found to be the standardized residual. The multidimensional structure of the Functional Independence Measure (FIMSM) is confirmed by means of Rasch analysis followed by factor analysis of standardized residuals.</p>\",\"PeriodicalId\":79673,\"journal\":{\"name\":\"Journal of outcome measurement\",\"volume\":\"2 3\",\"pages\":\"266-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of outcome measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of outcome measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因子分析是研究观测数据多维度的一种有效方法,但它无法构建区间测度。Rasch分析构建间隔度量,但只能间接标记多维结构的存在。仿真研究表明,对于完整测试的响应,从观测数据构建Rasch测度,然后对Rasch残差进行主成分因子分析,提供了一种识别多维度的有效手段。发现最具诊断价值的残差形式是标准化残差。通过Rasch分析和标准化残差因子分析,确定了功能独立性测度(FIMSM)的多维结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting multidimensionality: which residual data-type works best?

Factor analysis is a powerful technique for investigating multidimensionality in observational data, but it fails to construct interval measures. Rasch analysis constructs interval measures, but only indirectly flags the presence of multidimensional structures. Simulation studies indicate that, for responses to complete tests, construction of Rasch measures from the observational data, followed by principal components factor analysis of Rasch residuals, provides an effective means of identifying multidimensionality. The most diagnostically useful residual form was found to be the standardized residual. The multidimensional structure of the Functional Independence Measure (FIMSM) is confirmed by means of Rasch analysis followed by factor analysis of standardized residuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of seven different scales used to quantify severity of cervical spondylotic myelopathy and post-operative improvement. The impact of rater effects on weighted composite scores under nested and spiraled scoring designs, using the multifaceted Rasch model. Measuring disability: application of the Rasch model to activities of daily living (ADL/IADL). Competency gradient for child-parent centers. Alternate forms reliability of the assessment of motor and process skills.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1