人听觉脑电与脑磁图反应的联合映射

Minna Huotilainen , István Winkler , Kimmo Alho , Carles Escera , Juha Virtanen , Risto J Ilmoniemi , Iiro P Jääskeläinen , Eero Pekkonen , Risto Näätänen
{"title":"人听觉脑电与脑磁图反应的联合映射","authors":"Minna Huotilainen ,&nbsp;István Winkler ,&nbsp;Kimmo Alho ,&nbsp;Carles Escera ,&nbsp;Juha Virtanen ,&nbsp;Risto J Ilmoniemi ,&nbsp;Iiro P Jääskeläinen ,&nbsp;Eero Pekkonen ,&nbsp;Risto Näätänen","doi":"10.1016/S0168-5597(98)00017-3","DOIUrl":null,"url":null,"abstract":"<div><p>Auditory electric and magnetic P50(m), N1(m) and MMN(m) responses to standard, deviant and novel sounds were studied by recording brain electrical activity with 25 EEG electrodes simultaneously with the corresponding magnetic signals measured with 122 MEG gradiometer coils. The sources of these responses were located on the basis of the MEG responses; all were found to be in the supratemporal plane. The goal of the present paper was to investigate to what degree the source locations and orientations determined from the magnetic data account for the measured EEG signals. It was found that the electric P50, N1 and MMN responses can to a considerable degree be explained by the sources of the corresponding magnetic responses. In addition, source-current components not detectable by MEG were shown to contribute to the measured EEG signals.</p></div>","PeriodicalId":100401,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section","volume":"108 4","pages":"Pages 370-379"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0168-5597(98)00017-3","citationCount":"160","resultStr":"{\"title\":\"Combined mapping of human auditory EEG and MEG responses\",\"authors\":\"Minna Huotilainen ,&nbsp;István Winkler ,&nbsp;Kimmo Alho ,&nbsp;Carles Escera ,&nbsp;Juha Virtanen ,&nbsp;Risto J Ilmoniemi ,&nbsp;Iiro P Jääskeläinen ,&nbsp;Eero Pekkonen ,&nbsp;Risto Näätänen\",\"doi\":\"10.1016/S0168-5597(98)00017-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Auditory electric and magnetic P50(m), N1(m) and MMN(m) responses to standard, deviant and novel sounds were studied by recording brain electrical activity with 25 EEG electrodes simultaneously with the corresponding magnetic signals measured with 122 MEG gradiometer coils. The sources of these responses were located on the basis of the MEG responses; all were found to be in the supratemporal plane. The goal of the present paper was to investigate to what degree the source locations and orientations determined from the magnetic data account for the measured EEG signals. It was found that the electric P50, N1 and MMN responses can to a considerable degree be explained by the sources of the corresponding magnetic responses. In addition, source-current components not detectable by MEG were shown to contribute to the measured EEG signals.</p></div>\",\"PeriodicalId\":100401,\"journal\":{\"name\":\"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section\",\"volume\":\"108 4\",\"pages\":\"Pages 370-379\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0168-5597(98)00017-3\",\"citationCount\":\"160\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168559798000173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168559798000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

摘要

通过记录25个脑电电极的脑电活动,同时用122个脑磁梯度仪线圈测量相应的磁信号,研究了听觉电、磁P50(m)、N1(m)和MMN(m)对标准、异常和新颖声音的响应。这些反应的来源是在脑磁图反应的基础上确定的;所有的都在颞上平面。本文的目的是研究从磁数据中确定的源位置和方向在多大程度上解释了测量的脑电图信号。发现P50、N1和MMN的电响应在相当程度上可以用相应的磁响应源来解释。此外,无法被MEG检测到的源电流分量被证明有助于测量到的脑电图信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined mapping of human auditory EEG and MEG responses

Auditory electric and magnetic P50(m), N1(m) and MMN(m) responses to standard, deviant and novel sounds were studied by recording brain electrical activity with 25 EEG electrodes simultaneously with the corresponding magnetic signals measured with 122 MEG gradiometer coils. The sources of these responses were located on the basis of the MEG responses; all were found to be in the supratemporal plane. The goal of the present paper was to investigate to what degree the source locations and orientations determined from the magnetic data account for the measured EEG signals. It was found that the electric P50, N1 and MMN responses can to a considerable degree be explained by the sources of the corresponding magnetic responses. In addition, source-current components not detectable by MEG were shown to contribute to the measured EEG signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Evoked Potentials Clinical Evoked Potentials: An Illustrated Manual Somatosensory Evoked Potentials Motor Evoked Potentials Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1