{"title":"分子马达的作用机制和细胞功能。","authors":"P Chaussepied, C Smyczynski, J Van Dijk","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cytoskeleton based molecular motors support most of the cellular movements and by consequence they are associated with a variety of human disorders. The wide functional diversity of these molecular motors is now explained by the presence of three different families: the myosin, kinesin and dynein families. Although they are functionally distinct, these motors present unexpected structural homologies at the ATP and actin or microtubule binding sites. However, these homologies do not seem sufficient to design a common molecular mechanism which allows these proteins to move along the cytoskeleton.</p>","PeriodicalId":10658,"journal":{"name":"Comptes rendus des seances de la Societe de biologie et de ses filiales","volume":"192 2","pages":"319-34"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Mechanisms of action and cellular functions of molecular motors].\",\"authors\":\"P Chaussepied, C Smyczynski, J Van Dijk\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytoskeleton based molecular motors support most of the cellular movements and by consequence they are associated with a variety of human disorders. The wide functional diversity of these molecular motors is now explained by the presence of three different families: the myosin, kinesin and dynein families. Although they are functionally distinct, these motors present unexpected structural homologies at the ATP and actin or microtubule binding sites. However, these homologies do not seem sufficient to design a common molecular mechanism which allows these proteins to move along the cytoskeleton.</p>\",\"PeriodicalId\":10658,\"journal\":{\"name\":\"Comptes rendus des seances de la Societe de biologie et de ses filiales\",\"volume\":\"192 2\",\"pages\":\"319-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes rendus des seances de la Societe de biologie et de ses filiales\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes rendus des seances de la Societe de biologie et de ses filiales","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Mechanisms of action and cellular functions of molecular motors].
Cytoskeleton based molecular motors support most of the cellular movements and by consequence they are associated with a variety of human disorders. The wide functional diversity of these molecular motors is now explained by the presence of three different families: the myosin, kinesin and dynein families. Although they are functionally distinct, these motors present unexpected structural homologies at the ATP and actin or microtubule binding sites. However, these homologies do not seem sufficient to design a common molecular mechanism which allows these proteins to move along the cytoskeleton.