{"title":"在大肠杆菌中表达的变形链球菌葡萄糖基转移酶(GtfC)的纯化和鉴定。","authors":"J S Chia, C C Hsieh, C S Yang, J Y Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus mutans constitutively expresses three glucosyltransferases, i.e., GtfB, GtfC, and GtfD; which synthesize glucan polymers from sucrose. To obtain individual GTF without complexing with one another, a purification strategy was developed to recover recombinant GTF expressed from Escherichia coli. The recombinant GtfC was aggregated and associated with the insoluble fraction in E. coli homogenates. GtfC was solublized with the 8M urea, renatured to its biologically active form by serial dialysis against sodium phosphate buffer, and subsequently purified to homogeneity by DEAE-Sephacel and hydroxylapatite column chromatography. The GtfC enzyme preparation was purified 16.3-fold and the molecular weight was estimated to be 140 kDa. GtfC synthesized water insoluble glucan in a primer independent manner and its enzymatic activities could be enhanced by dextran. Purified GtfC had a pH optimum of 6.5, a K(m) of 9.26 mM for sucrose and a pI of 5.5. Distinct from the previous reports, results from this study offers an alternative for the purification of the recombinant GTFs free from any detergent contamination to make it more suitable for utilization in vivo.</p>","PeriodicalId":24009,"journal":{"name":"Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification and characterization of Streptococcus mutans glucosyltransferase (GtfC) expressed in Escherichia coli.\",\"authors\":\"J S Chia, C C Hsieh, C S Yang, J Y Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Streptococcus mutans constitutively expresses three glucosyltransferases, i.e., GtfB, GtfC, and GtfD; which synthesize glucan polymers from sucrose. To obtain individual GTF without complexing with one another, a purification strategy was developed to recover recombinant GTF expressed from Escherichia coli. The recombinant GtfC was aggregated and associated with the insoluble fraction in E. coli homogenates. GtfC was solublized with the 8M urea, renatured to its biologically active form by serial dialysis against sodium phosphate buffer, and subsequently purified to homogeneity by DEAE-Sephacel and hydroxylapatite column chromatography. The GtfC enzyme preparation was purified 16.3-fold and the molecular weight was estimated to be 140 kDa. GtfC synthesized water insoluble glucan in a primer independent manner and its enzymatic activities could be enhanced by dextran. Purified GtfC had a pH optimum of 6.5, a K(m) of 9.26 mM for sucrose and a pI of 5.5. Distinct from the previous reports, results from this study offers an alternative for the purification of the recombinant GTFs free from any detergent contamination to make it more suitable for utilization in vivo.</p>\",\"PeriodicalId\":24009,\"journal\":{\"name\":\"Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
变形链球菌组成性表达三种糖基转移酶,即GtfB、GtfC和GtfD;由蔗糖合成葡聚糖聚合物。为了获得不相互络合的单个GTF,开发了一种纯化策略,以回收大肠杆菌表达的重组GTF。重组GtfC在大肠杆菌匀浆中聚集并与不溶性部分相结合。用8M尿素溶解GtfC,通过磷酸钠缓冲液的连续透析使其恢复为生物活性形式,随后通过deae - sepacel和羟基磷灰石柱层析纯化至均匀。GtfC酶制剂经16.3倍纯化,分子量估计为140 kDa。GtfC以不依赖引物的方式合成了不溶于水的葡聚糖,葡聚糖可以增强其酶活性。纯化后的GtfC最适pH为6.5,蔗糖的K(m)为9.26 mM, pI为5.5。与以往的报道不同,本研究的结果为重组gtf的纯化提供了一种不受任何洗涤剂污染的替代方法,使其更适合在体内利用。
Purification and characterization of Streptococcus mutans glucosyltransferase (GtfC) expressed in Escherichia coli.
Streptococcus mutans constitutively expresses three glucosyltransferases, i.e., GtfB, GtfC, and GtfD; which synthesize glucan polymers from sucrose. To obtain individual GTF without complexing with one another, a purification strategy was developed to recover recombinant GTF expressed from Escherichia coli. The recombinant GtfC was aggregated and associated with the insoluble fraction in E. coli homogenates. GtfC was solublized with the 8M urea, renatured to its biologically active form by serial dialysis against sodium phosphate buffer, and subsequently purified to homogeneity by DEAE-Sephacel and hydroxylapatite column chromatography. The GtfC enzyme preparation was purified 16.3-fold and the molecular weight was estimated to be 140 kDa. GtfC synthesized water insoluble glucan in a primer independent manner and its enzymatic activities could be enhanced by dextran. Purified GtfC had a pH optimum of 6.5, a K(m) of 9.26 mM for sucrose and a pI of 5.5. Distinct from the previous reports, results from this study offers an alternative for the purification of the recombinant GTFs free from any detergent contamination to make it more suitable for utilization in vivo.