p -糖蛋白的催化机理。

A E Senior
{"title":"p -糖蛋白的催化机理。","authors":"A E Senior","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We generated Chinese hamster ovary cells which are highly multidrug-resistant by selection in colchicine. Purified plasma membranes from these cells are enriched in P-glycoprotein (Pgp), up to 32% w/w of membrane protein. From plasma membranes we purified Pgp to homogeneity and reconstituted it in proteoliposomes. Both plasma membranes and purified reconstituted Pgp show drug-stimulated ATPase activity (approximately 20 s-1), comparable to other transport ATPases. These materials enable investigation and characterization of the catalytic sites and mechanism. Various approaches have been used, notably enzyme kinetics, photoaffinity and other covalent labelling, use of vanadate as transition-state analog, and inhibition by beryllium and aluminum fluoride. Both Pgp nucleotide sites hydrolyse MgATP and are of relatively low specificity and affinity for nucleotides. Trapping of nucleotide by vanadate in either site blocks catalysis at both sites; covalent inactivation of either site completely blocks turnover. Therefore the catalytic sites interact strongly, and it appears that when one site enters the transition-state conformation the other site is prohibited from doing so. A minimal reaction scheme for ATP hydrolysis has been determined. We have proposed an alternating catalytic sites scheme, in which drug-transport is coupled to relaxation of a high chemical potential conformation of the catalytic site (Pgp.MgADP.Pi) which is generated by the hydrolysis step itself. Photoaffinity labelling of Pgp catalytic sites has revealed equivalent Tyr residues which lie close to the adenine ring of bound MgATP in both sites.</p>","PeriodicalId":75414,"journal":{"name":"Acta physiologica Scandinavica. Supplementum","volume":"643 ","pages":"213-8"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic mechanism of P-glycoprotein.\",\"authors\":\"A E Senior\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We generated Chinese hamster ovary cells which are highly multidrug-resistant by selection in colchicine. Purified plasma membranes from these cells are enriched in P-glycoprotein (Pgp), up to 32% w/w of membrane protein. From plasma membranes we purified Pgp to homogeneity and reconstituted it in proteoliposomes. Both plasma membranes and purified reconstituted Pgp show drug-stimulated ATPase activity (approximately 20 s-1), comparable to other transport ATPases. These materials enable investigation and characterization of the catalytic sites and mechanism. Various approaches have been used, notably enzyme kinetics, photoaffinity and other covalent labelling, use of vanadate as transition-state analog, and inhibition by beryllium and aluminum fluoride. Both Pgp nucleotide sites hydrolyse MgATP and are of relatively low specificity and affinity for nucleotides. Trapping of nucleotide by vanadate in either site blocks catalysis at both sites; covalent inactivation of either site completely blocks turnover. Therefore the catalytic sites interact strongly, and it appears that when one site enters the transition-state conformation the other site is prohibited from doing so. A minimal reaction scheme for ATP hydrolysis has been determined. We have proposed an alternating catalytic sites scheme, in which drug-transport is coupled to relaxation of a high chemical potential conformation of the catalytic site (Pgp.MgADP.Pi) which is generated by the hydrolysis step itself. Photoaffinity labelling of Pgp catalytic sites has revealed equivalent Tyr residues which lie close to the adenine ring of bound MgATP in both sites.</p>\",\"PeriodicalId\":75414,\"journal\":{\"name\":\"Acta physiologica Scandinavica. Supplementum\",\"volume\":\"643 \",\"pages\":\"213-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta physiologica Scandinavica. Supplementum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica Scandinavica. Supplementum","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过秋水仙碱的选择,制备了具有高度多重耐药的中国仓鼠卵巢细胞。从这些细胞纯化的质膜富含p -糖蛋白(Pgp),高达32% w/w的膜蛋白。从质膜纯化Pgp至均匀性,并在蛋白脂质体中重组。质膜和纯化重组Pgp均显示药物刺激的atp酶活性(约20 s-1),与其他转运atp酶相当。这些材料使研究和表征催化位点和机理成为可能。已经使用了各种方法,特别是酶动力学,光亲和和其他共价标记,使用钒酸盐作为过渡态类似物,以及铍和氟化铝的抑制作用。这两个Pgp核苷酸位点都能水解MgATP,对核苷酸的特异性和亲和力相对较低。钒酸盐在两个位点上捕获核苷酸会阻断两个位点的催化作用;任何一个位点的共价失活都完全阻断了营业额。因此,催化位点之间的相互作用强烈,当一个位点进入过渡态构象时,另一个位点似乎被禁止这样做。确定了ATP水解的最小反应方案。我们提出了一种交替催化位点方案,其中药物运输与水解步骤本身产生的催化位点(Pgp.MgADP.Pi)的高化学势构象的弛豫相耦合。Pgp催化位点的光亲和标记显示,在两个位点上,结合MgATP的腺嘌呤环附近都有相当的Tyr残基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic mechanism of P-glycoprotein.

We generated Chinese hamster ovary cells which are highly multidrug-resistant by selection in colchicine. Purified plasma membranes from these cells are enriched in P-glycoprotein (Pgp), up to 32% w/w of membrane protein. From plasma membranes we purified Pgp to homogeneity and reconstituted it in proteoliposomes. Both plasma membranes and purified reconstituted Pgp show drug-stimulated ATPase activity (approximately 20 s-1), comparable to other transport ATPases. These materials enable investigation and characterization of the catalytic sites and mechanism. Various approaches have been used, notably enzyme kinetics, photoaffinity and other covalent labelling, use of vanadate as transition-state analog, and inhibition by beryllium and aluminum fluoride. Both Pgp nucleotide sites hydrolyse MgATP and are of relatively low specificity and affinity for nucleotides. Trapping of nucleotide by vanadate in either site blocks catalysis at both sites; covalent inactivation of either site completely blocks turnover. Therefore the catalytic sites interact strongly, and it appears that when one site enters the transition-state conformation the other site is prohibited from doing so. A minimal reaction scheme for ATP hydrolysis has been determined. We have proposed an alternating catalytic sites scheme, in which drug-transport is coupled to relaxation of a high chemical potential conformation of the catalytic site (Pgp.MgADP.Pi) which is generated by the hydrolysis step itself. Photoaffinity labelling of Pgp catalytic sites has revealed equivalent Tyr residues which lie close to the adenine ring of bound MgATP in both sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptation of human skeletal muscle to training and anabolic steroids. Biology of Nitric Oxide, 6th International Meeting. Stockholm, Sweden, September 5-8, 1999. Abstracts. On the role of PGD2 metabolites as markers of mast cell activation in asthma. GABA and human spermatozoa: characterization and regulation of GABA transport proteins. Metal-catalysed cleavage of Na,K-ATPase as a tool for study of structure-function relations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1