[脑血管紧张素II和血管紧张素III代谢途径的鉴定:血管紧张素III在控制加压素分泌中的主导作用]。

C Llorens-Cortes
{"title":"[脑血管紧张素II和血管紧张素III代谢途径的鉴定:血管紧张素III在控制加压素分泌中的主导作用]。","authors":"C Llorens-Cortes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Angiotensin (Ang) II and AngIII are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of AngII and AngIII, respectively. Mice received [3H]AngII intracerebroventricularly (i.c.v.) in the presence or absence of the APA inhibitor, EC33 ((S)-3-amino-4-mercapto-butylsulfonate de sodium) or the APN inhibitor, EC27 ((S)-2-amino-pentan-1,5-dithiol). [3H]AngII and [3H]AngIII levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]AngII 2.6-fold and completely blocked the formation of [3H]AngIII, whereas EC27 increased the half-life of [3H]AngIII 2.3-fold. In addition, the effects of EC33 and EC27 on Ang- induced vasopressin release were studied in mice. AngII was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by AngII, EC33 inhibited AngII-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) AngII. These results demonstrate for the first time that i) APA and APN are involved in vivo in the metabolism of brain AngII and AngIII, respectively, and that ii) the action of AngII on vasopressin release depends upon the prior conversion of AngII to AngIII. This shows that AngIII behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.</p>","PeriodicalId":10658,"journal":{"name":"Comptes rendus des seances de la Societe de biologie et de ses filiales","volume":"192 4","pages":"607-18"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Identification of metabolic pathways of brain angiotensin II and angiotensin III: predominant role of angiotensin III in the control of vasopressin secretion].\",\"authors\":\"C Llorens-Cortes\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiotensin (Ang) II and AngIII are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of AngII and AngIII, respectively. Mice received [3H]AngII intracerebroventricularly (i.c.v.) in the presence or absence of the APA inhibitor, EC33 ((S)-3-amino-4-mercapto-butylsulfonate de sodium) or the APN inhibitor, EC27 ((S)-2-amino-pentan-1,5-dithiol). [3H]AngII and [3H]AngIII levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]AngII 2.6-fold and completely blocked the formation of [3H]AngIII, whereas EC27 increased the half-life of [3H]AngIII 2.3-fold. In addition, the effects of EC33 and EC27 on Ang- induced vasopressin release were studied in mice. AngII was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by AngII, EC33 inhibited AngII-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) AngII. These results demonstrate for the first time that i) APA and APN are involved in vivo in the metabolism of brain AngII and AngIII, respectively, and that ii) the action of AngII on vasopressin release depends upon the prior conversion of AngII to AngIII. This shows that AngIII behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.</p>\",\"PeriodicalId\":10658,\"journal\":{\"name\":\"Comptes rendus des seances de la Societe de biologie et de ses filiales\",\"volume\":\"192 4\",\"pages\":\"607-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes rendus des seances de la Societe de biologie et de ses filiales\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes rendus des seances de la Societe de biologie et de ses filiales","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血管紧张素(Ang) II和AngIII是脑肾素-血管紧张素系统的两种肽效应物,参与控制血压,增加水分消耗和加压素释放。为了描述这些肽在调节抗利尿激素分泌中的各自作用,我们在体内鉴定了它们的代谢途径及其对抗利尿激素释放的影响。为此,我们使用了最近开发的氨肽酶A (APA)和氨肽酶N (APN)的选择性抑制剂,这两种酶被认为分别负责AngII和AngIII的N端切割。小鼠在存在或不存在APA抑制剂EC33 ((S)-3-氨基-4-巯基丁基磺酸钠)或APN抑制剂EC27 ((S)-2-氨基戊烷-1,5-二硫醇)的情况下接受[3H]AngII脑室内注射。用高效液相色谱法测定下丘脑匀浆中AngII和[3H]AngIII的水平。EC33使[3H]AngII的半衰期延长2.6倍,完全阻断[3H]AngIII的形成,而EC27使[3H]AngIII的半衰期延长2.3倍。此外,我们还研究了EC33和EC27对Ang诱导的小鼠抗利尿激素释放的影响。在EC33存在或不存在的情况下静脉注射AngII,并通过RIA估计血浆加压素水平。当血管加压素水平被AngII提高2倍时,EC33以剂量依赖的方式抑制血管加压素的释放。相比之下,单独注射EC27以剂量依赖的方式增加抗利尿激素水平。联合使用Ang受体拮抗剂(Sar1-Ala8) AngII可完全阻断ec27诱导的抗利尿激素释放。这些结果首次证明了i)在体内,APA和APN分别参与了脑AngII和AngIII的代谢,ii) AngII对抗利尿激素释放的作用取决于AngII向AngIII的事先转化。这表明AngIII是脑肾素-血管紧张素系统控制抗利尿激素释放的主要效应肽之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Identification of metabolic pathways of brain angiotensin II and angiotensin III: predominant role of angiotensin III in the control of vasopressin secretion].

Angiotensin (Ang) II and AngIII are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of AngII and AngIII, respectively. Mice received [3H]AngII intracerebroventricularly (i.c.v.) in the presence or absence of the APA inhibitor, EC33 ((S)-3-amino-4-mercapto-butylsulfonate de sodium) or the APN inhibitor, EC27 ((S)-2-amino-pentan-1,5-dithiol). [3H]AngII and [3H]AngIII levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]AngII 2.6-fold and completely blocked the formation of [3H]AngIII, whereas EC27 increased the half-life of [3H]AngIII 2.3-fold. In addition, the effects of EC33 and EC27 on Ang- induced vasopressin release were studied in mice. AngII was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by AngII, EC33 inhibited AngII-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) AngII. These results demonstrate for the first time that i) APA and APN are involved in vivo in the metabolism of brain AngII and AngIII, respectively, and that ii) the action of AngII on vasopressin release depends upon the prior conversion of AngII to AngIII. This shows that AngIII behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Glycosaminoglycans and proteoglycans]. [Tissue selectivity of calcium channel blockers]. [Physiopathology of calcium channels: identification of calcium channelopathies]. [Intracellular calcium channels, hormone receptors and intercellular calcium waves]. [Astrocytes and lentivirus infection in an experimental models of macaque infected with SIVmac251].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1