Felix O Aikhionbare , Cheryl Newman , Chad Womack , William Roth , Ketan Shah , Vincent C Bond
{"title":"随机扩增多态性DNA PCR在hiv -1感染者基因组分析中的应用","authors":"Felix O Aikhionbare , Cheryl Newman , Chad Womack , William Roth , Ketan Shah , Vincent C Bond","doi":"10.1016/S1383-5726(98)00007-7","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) is a </span>DNA fingerprinting<span><span> technique used to detect genomic polymorphisms. We employed sixteen different RAPD-PCR 10-mer primers to amplify DNA from the peripheral blood mononuclear cells (PBMC) of 80 HIV-1-infected individuals. These individuals were previously identified as either heterozygotes (+/Δ32) and </span>homozygotes (+/+) for the </span></span>CCR5<span> locus by PCR with gene specific primers. Four of the sixteen randomly selected RAPD primers produced distinguishable banding profiles between CCR5 (+/Δ32) heterozygotes and CCR5 (+/+) homozygotes. Direct sequencing of some RAPD-PCR products obtained with one of the four RAPD primers that were tested yielded clearly readable, but limited sequences, which were similar to portions of the previously published sequences for (+/+) homozygotes (98% similarity) and (+/Δ32) heterozygotes (87% similarity) of the CCR5 alleles. Thus, the RAPD-PCR technique may be useful for the identification of human molecular markers that may correlate with susceptibility to HIV-1-infection, or differences in disease progression among HIV-1-infected individuals.</span></p></div>","PeriodicalId":100939,"journal":{"name":"Mutation Research/Mutation Research Genomics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1383-5726(98)00007-7","citationCount":"2","resultStr":"{\"title\":\"Application of random amplified polymorphic DNA PCR for genomic analysis of HIV-1-infected individuals\",\"authors\":\"Felix O Aikhionbare , Cheryl Newman , Chad Womack , William Roth , Ketan Shah , Vincent C Bond\",\"doi\":\"10.1016/S1383-5726(98)00007-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) is a </span>DNA fingerprinting<span><span> technique used to detect genomic polymorphisms. We employed sixteen different RAPD-PCR 10-mer primers to amplify DNA from the peripheral blood mononuclear cells (PBMC) of 80 HIV-1-infected individuals. These individuals were previously identified as either heterozygotes (+/Δ32) and </span>homozygotes (+/+) for the </span></span>CCR5<span> locus by PCR with gene specific primers. Four of the sixteen randomly selected RAPD primers produced distinguishable banding profiles between CCR5 (+/Δ32) heterozygotes and CCR5 (+/+) homozygotes. Direct sequencing of some RAPD-PCR products obtained with one of the four RAPD primers that were tested yielded clearly readable, but limited sequences, which were similar to portions of the previously published sequences for (+/+) homozygotes (98% similarity) and (+/Δ32) heterozygotes (87% similarity) of the CCR5 alleles. Thus, the RAPD-PCR technique may be useful for the identification of human molecular markers that may correlate with susceptibility to HIV-1-infection, or differences in disease progression among HIV-1-infected individuals.</span></p></div>\",\"PeriodicalId\":100939,\"journal\":{\"name\":\"Mutation Research/Mutation Research Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1383-5726(98)00007-7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/Mutation Research Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383572698000077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/Mutation Research Genomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383572698000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of random amplified polymorphic DNA PCR for genomic analysis of HIV-1-infected individuals
Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) is a DNA fingerprinting technique used to detect genomic polymorphisms. We employed sixteen different RAPD-PCR 10-mer primers to amplify DNA from the peripheral blood mononuclear cells (PBMC) of 80 HIV-1-infected individuals. These individuals were previously identified as either heterozygotes (+/Δ32) and homozygotes (+/+) for the CCR5 locus by PCR with gene specific primers. Four of the sixteen randomly selected RAPD primers produced distinguishable banding profiles between CCR5 (+/Δ32) heterozygotes and CCR5 (+/+) homozygotes. Direct sequencing of some RAPD-PCR products obtained with one of the four RAPD primers that were tested yielded clearly readable, but limited sequences, which were similar to portions of the previously published sequences for (+/+) homozygotes (98% similarity) and (+/Δ32) heterozygotes (87% similarity) of the CCR5 alleles. Thus, the RAPD-PCR technique may be useful for the identification of human molecular markers that may correlate with susceptibility to HIV-1-infection, or differences in disease progression among HIV-1-infected individuals.