尿苷激酶(ATP:尿苷5′-磷酸转移酶)升高;EC 2.7.1.48)在人和大鼠肿瘤中的活性。

Cancer biochemistry biophysics Pub Date : 1998-06-01
F Shen, K Y Look, Y A Yeh, G Weber
{"title":"尿苷激酶(ATP:尿苷5′-磷酸转移酶)升高;EC 2.7.1.48)在人和大鼠肿瘤中的活性。","authors":"F Shen,&nbsp;K Y Look,&nbsp;Y A Yeh,&nbsp;G Weber","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The activity of uridine kinase (ATP: uridine 5'-phosphotransferase; EC 2.7.1.48), the rate-limiting enzyme of the UMP salvage pathway, was measured in human ovaries and ovarian carcinomas, in a spectrum of six rat hepatomas of different growth rates and in eleven normal rat tissues of high and low cell renewal rates. In a standard isotopic method developed for the 100,000 x g fraction, uridine kinase activity was linear for 20 min and proportional with protein concentration over a range of 0.1 to 0.8 mg per 0.1 ml reaction mixture. The apparent Kms for uridine, ATP and Mg++ in normal rat liver were 5.0, 3.4 and 1.5 mM and in the rapidly growing hepatoma 3924A, 0.8, 2.1 and 1.1 mM, respectively. In normal control ACl/N and Buffalo strain rat livers, kinase activity ranged from 159 to 180 nmol/h/mg protein. In hepatomas of slow and intermediate growth rates, kinase activity increased to 1.5- to 2.6-fold, and in hepatomas of rapid growth rates, to 5.1- to 5.8-fold over that of the relevant control, normal livers. When hepatoma 3924A tissue culture cells were plated and expressed their proliferative program, kinase activity increased to 2.1-fold in early log phase. To further clarify the linkage between uridine kinase and cell replicating capacity, the enzyme activity was measured in rat organs of high and low cell renewal. The kinase activity in liver of adult male Wistar rats was 176 +/- 6 nmol/h/mg protein. Activities in thymus, spleen and bone marrow were 4.7-, 2.1-, and 1.8-fold, respectively, of rat liver values; in adipose tissue, the activities were low. The decay rates of uridine kinase were examined in rats injected with a high dose of cycloheximide, which inhibits protein biosynthesis by 90%. The t(1/2) of the kinase in rat bone marrow was 0.64 h, in rat liver longer than 6 h. In human ovary and ovarian carcinoma, the apparent Kms for uridine were 11.5 and 0.5 mM, respectively. In human ovary (n = 3), kinase activity was 38 nmol/hr/mg protein; in ovarian carcinoma (n = 6), the activity increased to 5- to 13-fold over that in ovary. The positive linkage of uridine kinase activity with proliferation and transformation is apparent in human ovarian carcinomas and in rat hepatomas of different growth rates. Therefore, the increased uridine kinase activity should be an interesting target for anticancer chemotherapy.</p>","PeriodicalId":9552,"journal":{"name":"Cancer biochemistry biophysics","volume":"16 1-2","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased uridine kinase (ATP: uridine 5'-phosphotransferase; EC 2.7.1.48) activity in human and rat tumors.\",\"authors\":\"F Shen,&nbsp;K Y Look,&nbsp;Y A Yeh,&nbsp;G Weber\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The activity of uridine kinase (ATP: uridine 5'-phosphotransferase; EC 2.7.1.48), the rate-limiting enzyme of the UMP salvage pathway, was measured in human ovaries and ovarian carcinomas, in a spectrum of six rat hepatomas of different growth rates and in eleven normal rat tissues of high and low cell renewal rates. In a standard isotopic method developed for the 100,000 x g fraction, uridine kinase activity was linear for 20 min and proportional with protein concentration over a range of 0.1 to 0.8 mg per 0.1 ml reaction mixture. The apparent Kms for uridine, ATP and Mg++ in normal rat liver were 5.0, 3.4 and 1.5 mM and in the rapidly growing hepatoma 3924A, 0.8, 2.1 and 1.1 mM, respectively. In normal control ACl/N and Buffalo strain rat livers, kinase activity ranged from 159 to 180 nmol/h/mg protein. In hepatomas of slow and intermediate growth rates, kinase activity increased to 1.5- to 2.6-fold, and in hepatomas of rapid growth rates, to 5.1- to 5.8-fold over that of the relevant control, normal livers. When hepatoma 3924A tissue culture cells were plated and expressed their proliferative program, kinase activity increased to 2.1-fold in early log phase. To further clarify the linkage between uridine kinase and cell replicating capacity, the enzyme activity was measured in rat organs of high and low cell renewal. The kinase activity in liver of adult male Wistar rats was 176 +/- 6 nmol/h/mg protein. Activities in thymus, spleen and bone marrow were 4.7-, 2.1-, and 1.8-fold, respectively, of rat liver values; in adipose tissue, the activities were low. The decay rates of uridine kinase were examined in rats injected with a high dose of cycloheximide, which inhibits protein biosynthesis by 90%. The t(1/2) of the kinase in rat bone marrow was 0.64 h, in rat liver longer than 6 h. In human ovary and ovarian carcinoma, the apparent Kms for uridine were 11.5 and 0.5 mM, respectively. In human ovary (n = 3), kinase activity was 38 nmol/hr/mg protein; in ovarian carcinoma (n = 6), the activity increased to 5- to 13-fold over that in ovary. The positive linkage of uridine kinase activity with proliferation and transformation is apparent in human ovarian carcinomas and in rat hepatomas of different growth rates. Therefore, the increased uridine kinase activity should be an interesting target for anticancer chemotherapy.</p>\",\"PeriodicalId\":9552,\"journal\":{\"name\":\"Cancer biochemistry biophysics\",\"volume\":\"16 1-2\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer biochemistry biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer biochemistry biophysics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尿苷激酶(ATP:尿苷5′-磷酸转移酶)活性;在人卵巢、卵巢癌、6种不同生长速度的大鼠肝癌和11种细胞更新率高、低的正常大鼠组织中,测定了UMP挽救途径的限速酶EC 2.7.1.48)。在为100,000 x g组分开发的标准同位素方法中,尿苷激酶活性在20分钟内呈线性,并与蛋白质浓度成正比,在0.1至0.8 mg / 0.1 ml反应混合物的范围内。尿苷、ATP和Mg++在正常大鼠肝脏中的表观km分别为5.0、3.4和1.5 mM,在快速生长的肝癌3924A中为0.8、2.1和1.1 mM。在正常对照ACl/N和Buffalo菌株大鼠肝脏中,激酶活性在159 ~ 180 nmol/h/mg蛋白之间。在缓慢和中等生长速度的肝癌中,激酶活性增加到1.5- 2.6倍,在快速生长速度的肝癌中,激酶活性增加到相关对照正常肝脏的5.1- 5.8倍。当肝癌3924A组织培养细胞被包裹并表达其增殖程序时,激酶活性在早期log期增加到2.1倍。为了进一步阐明尿苷激酶与细胞复制能力之间的联系,我们在高细胞更新和低细胞更新的大鼠器官中测量了该酶的活性。成年雄性Wistar大鼠肝脏的激酶活性为176 +/- 6 nmol/h/mg蛋白。胸腺、脾脏和骨髓的活性分别是大鼠肝脏的4.7倍、2.1倍和1.8倍;在脂肪组织中,活性较低。大鼠注射高剂量的环己亚胺后,尿苷激酶的衰减率达到90%。该激酶在大鼠骨髓中的t(1/2)为0.64 h,在大鼠肝脏中的t(1/2)大于6 h。在人卵巢和卵巢癌中,尿苷的表观Kms分别为11.5和0.5 mM。在人卵巢(n = 3)中,激酶活性为38 nmol/hr/mg蛋白;在卵巢癌(n = 6)中,活性增加到卵巢的5- 13倍。尿苷激酶活性与人卵巢癌和不同生长速度的大鼠肝癌的增殖和转化呈正相关。因此,增加的尿苷激酶活性应该是抗癌化疗的一个有趣的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increased uridine kinase (ATP: uridine 5'-phosphotransferase; EC 2.7.1.48) activity in human and rat tumors.

The activity of uridine kinase (ATP: uridine 5'-phosphotransferase; EC 2.7.1.48), the rate-limiting enzyme of the UMP salvage pathway, was measured in human ovaries and ovarian carcinomas, in a spectrum of six rat hepatomas of different growth rates and in eleven normal rat tissues of high and low cell renewal rates. In a standard isotopic method developed for the 100,000 x g fraction, uridine kinase activity was linear for 20 min and proportional with protein concentration over a range of 0.1 to 0.8 mg per 0.1 ml reaction mixture. The apparent Kms for uridine, ATP and Mg++ in normal rat liver were 5.0, 3.4 and 1.5 mM and in the rapidly growing hepatoma 3924A, 0.8, 2.1 and 1.1 mM, respectively. In normal control ACl/N and Buffalo strain rat livers, kinase activity ranged from 159 to 180 nmol/h/mg protein. In hepatomas of slow and intermediate growth rates, kinase activity increased to 1.5- to 2.6-fold, and in hepatomas of rapid growth rates, to 5.1- to 5.8-fold over that of the relevant control, normal livers. When hepatoma 3924A tissue culture cells were plated and expressed their proliferative program, kinase activity increased to 2.1-fold in early log phase. To further clarify the linkage between uridine kinase and cell replicating capacity, the enzyme activity was measured in rat organs of high and low cell renewal. The kinase activity in liver of adult male Wistar rats was 176 +/- 6 nmol/h/mg protein. Activities in thymus, spleen and bone marrow were 4.7-, 2.1-, and 1.8-fold, respectively, of rat liver values; in adipose tissue, the activities were low. The decay rates of uridine kinase were examined in rats injected with a high dose of cycloheximide, which inhibits protein biosynthesis by 90%. The t(1/2) of the kinase in rat bone marrow was 0.64 h, in rat liver longer than 6 h. In human ovary and ovarian carcinoma, the apparent Kms for uridine were 11.5 and 0.5 mM, respectively. In human ovary (n = 3), kinase activity was 38 nmol/hr/mg protein; in ovarian carcinoma (n = 6), the activity increased to 5- to 13-fold over that in ovary. The positive linkage of uridine kinase activity with proliferation and transformation is apparent in human ovarian carcinomas and in rat hepatomas of different growth rates. Therefore, the increased uridine kinase activity should be an interesting target for anticancer chemotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lactoferrin expression in human breast cancer. Modulation of the impaired drug metabolism in sarcoma-180-bearing mice by echitamine chloride. Magnetic field induced inhibition of human osteosarcoma cells treated with adriamycin. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase. Molecular basis of specific inhibition of urokinase plasminogen activator by amiloride.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1