流动中性粒细胞跨内皮迁移的每一步都受到肿瘤坏死因子- α刺激浓度的调节。

P Bahra, G E Rainger, J L Wautier, L Nguyet-Thin, G B Nash
{"title":"流动中性粒细胞跨内皮迁移的每一步都受到肿瘤坏死因子- α刺激浓度的调节。","authors":"P Bahra,&nbsp;G E Rainger,&nbsp;J L Wautier,&nbsp;L Nguyet-Thin,&nbsp;G B Nash","doi":"10.3109/15419069809010797","DOIUrl":null,"url":null,"abstract":"<p><p>Migration of circulating neutrophils occurs in several steps: capture and rolling adhesion are followed by activation of beta 2-integrins and immobilisation, and then neutrophils move over and through the endothelium. However, it is not clear how the underlying mechanisms and completion of each step depend on the concentration of stimulatory cytokines such as tumour necrosis factor-alpha (TNF). We therefore perfused neutrophils over human umbilical vein endothelial cells (HUVEC) which had been cultured with varying concentration of TNF (1-1000 U/ml) for 4 h, and recorded adhesion and migration by videomicroscopy. The number of adherent neutrophils increased with increasing TNF up to 5 U/ml, but changed little at higher concentrations. Interestingly, rolling adhesion at first predominated, but an increasing proportion of adherent cells became immobilised and migrated through the HUVEC monolayer over the complete TNF range. Immobilisation was inhibited by treating neutrophils with antibody against CD18, so that the major change in adhesive behaviour at higher levels of TNF occurred because the surface of the HUVEC presented agent(s) able to activate neutrophil beta 2-integrins. It was also evident that the selectins initiating capture of flowing neutrophils varied with concentration of TNF. At 100 U/ml TNF, both E-selectin and P-selectin supported capture and rolling adhesion, and antibody blockade of both receptors was required to inhibit adhesion. At lower dose (10 U/ml TNF), stable adhesion was blocked by antibody against E-selectin, although short-lived attachments could still be seen which were inhibited by antibody against P-selectin. Expression of sclectins increased with increasing concentration of TNF, judging from surface ELISA and reduction in the velocity of rolling adherent cells. Thus the efficiency of capture, the selectins mediating capture and the proportion of captured cells immobilised and migrating all depend on the concentration of TNF to which endothelial cells are exposed. These results suggest a model in which highly localised and efficient migration of neutrophils is achieved if a concentration gradient of TNF exists around an inflammatory locus.</p>","PeriodicalId":79325,"journal":{"name":"Cell adhesion and communication","volume":"6 6","pages":"491-501"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419069809010797","citationCount":"70","resultStr":"{\"title\":\"Each step during transendothelial migration of flowing neutrophils is regulated by the stimulatory concentration of tumour necrosis factor-alpha.\",\"authors\":\"P Bahra,&nbsp;G E Rainger,&nbsp;J L Wautier,&nbsp;L Nguyet-Thin,&nbsp;G B Nash\",\"doi\":\"10.3109/15419069809010797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Migration of circulating neutrophils occurs in several steps: capture and rolling adhesion are followed by activation of beta 2-integrins and immobilisation, and then neutrophils move over and through the endothelium. However, it is not clear how the underlying mechanisms and completion of each step depend on the concentration of stimulatory cytokines such as tumour necrosis factor-alpha (TNF). We therefore perfused neutrophils over human umbilical vein endothelial cells (HUVEC) which had been cultured with varying concentration of TNF (1-1000 U/ml) for 4 h, and recorded adhesion and migration by videomicroscopy. The number of adherent neutrophils increased with increasing TNF up to 5 U/ml, but changed little at higher concentrations. Interestingly, rolling adhesion at first predominated, but an increasing proportion of adherent cells became immobilised and migrated through the HUVEC monolayer over the complete TNF range. Immobilisation was inhibited by treating neutrophils with antibody against CD18, so that the major change in adhesive behaviour at higher levels of TNF occurred because the surface of the HUVEC presented agent(s) able to activate neutrophil beta 2-integrins. It was also evident that the selectins initiating capture of flowing neutrophils varied with concentration of TNF. At 100 U/ml TNF, both E-selectin and P-selectin supported capture and rolling adhesion, and antibody blockade of both receptors was required to inhibit adhesion. At lower dose (10 U/ml TNF), stable adhesion was blocked by antibody against E-selectin, although short-lived attachments could still be seen which were inhibited by antibody against P-selectin. Expression of sclectins increased with increasing concentration of TNF, judging from surface ELISA and reduction in the velocity of rolling adherent cells. Thus the efficiency of capture, the selectins mediating capture and the proportion of captured cells immobilised and migrating all depend on the concentration of TNF to which endothelial cells are exposed. These results suggest a model in which highly localised and efficient migration of neutrophils is achieved if a concentration gradient of TNF exists around an inflammatory locus.</p>\",\"PeriodicalId\":79325,\"journal\":{\"name\":\"Cell adhesion and communication\",\"volume\":\"6 6\",\"pages\":\"491-501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419069809010797\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell adhesion and communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419069809010797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell adhesion and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419069809010797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

循环中性粒细胞的迁移发生在几个步骤中:捕获和滚动粘附之后是β 2整合素的激活和固定,然后中性粒细胞移动并穿过内皮。然而,目前尚不清楚潜在的机制和每个步骤的完成如何依赖于刺激细胞因子如肿瘤坏死因子(TNF)的浓度。因此,我们将中性粒细胞灌注在不同浓度TNF (1-1000 U/ml)培养4小时的人脐静脉内皮细胞(HUVEC)上,并通过视频显微镜记录粘附和迁移。当TNF升高至5 U/ml时,附着中性粒细胞的数量增加,但在较高浓度下变化不大。有趣的是,滚动粘附最初占主导地位,但越来越多的贴壁细胞在整个TNF范围内通过HUVEC单层固定和迁移。用抗CD18抗体处理中性粒细胞抑制固定,因此在较高水平的TNF下发生粘附行为的主要变化,因为HUVEC表面呈现能够激活中性粒细胞β 2-整合素的剂。同样明显的是,启动流动中性粒细胞捕获的选择素随TNF浓度的变化而变化。在100 U/ml TNF时,e -选择素和p -选择素都支持捕获和滚动粘附,并且需要抗体阻断这两种受体来抑制粘附。在较低剂量(10 U/ml TNF)下,抗e -选择素抗体阻断了稳定的粘附,但仍能观察到被抗p -选择素抗体抑制的短暂粘附。从表面ELISA和滚动贴壁细胞速度的降低判断,凝集素的表达随TNF浓度的增加而增加。因此,捕获的效率、介导捕获的选择素和捕获的细胞固定和迁移的比例都取决于内皮细胞暴露的TNF浓度。这些结果表明,如果炎症位点周围存在TNF的浓度梯度,中性粒细胞的高度局部和有效迁移就会实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Each step during transendothelial migration of flowing neutrophils is regulated by the stimulatory concentration of tumour necrosis factor-alpha.

Migration of circulating neutrophils occurs in several steps: capture and rolling adhesion are followed by activation of beta 2-integrins and immobilisation, and then neutrophils move over and through the endothelium. However, it is not clear how the underlying mechanisms and completion of each step depend on the concentration of stimulatory cytokines such as tumour necrosis factor-alpha (TNF). We therefore perfused neutrophils over human umbilical vein endothelial cells (HUVEC) which had been cultured with varying concentration of TNF (1-1000 U/ml) for 4 h, and recorded adhesion and migration by videomicroscopy. The number of adherent neutrophils increased with increasing TNF up to 5 U/ml, but changed little at higher concentrations. Interestingly, rolling adhesion at first predominated, but an increasing proportion of adherent cells became immobilised and migrated through the HUVEC monolayer over the complete TNF range. Immobilisation was inhibited by treating neutrophils with antibody against CD18, so that the major change in adhesive behaviour at higher levels of TNF occurred because the surface of the HUVEC presented agent(s) able to activate neutrophil beta 2-integrins. It was also evident that the selectins initiating capture of flowing neutrophils varied with concentration of TNF. At 100 U/ml TNF, both E-selectin and P-selectin supported capture and rolling adhesion, and antibody blockade of both receptors was required to inhibit adhesion. At lower dose (10 U/ml TNF), stable adhesion was blocked by antibody against E-selectin, although short-lived attachments could still be seen which were inhibited by antibody against P-selectin. Expression of sclectins increased with increasing concentration of TNF, judging from surface ELISA and reduction in the velocity of rolling adherent cells. Thus the efficiency of capture, the selectins mediating capture and the proportion of captured cells immobilised and migrating all depend on the concentration of TNF to which endothelial cells are exposed. These results suggest a model in which highly localised and efficient migration of neutrophils is achieved if a concentration gradient of TNF exists around an inflammatory locus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expression of MacMARCKS restores cell adhesion to ICAM-1-coated surface. Quantitative determination of gap junction intercellular communication by scrape loading and image analysis. Expression of a soluble functional form of the integrin alpha4beta1 in mammalian cells. Tumor-derived mutated E-cadherin influences beta-catenin localization and increases susceptibility to actin cytoskeletal changes induced by pervanadate. Rac is essential in the transformation of endothelial cells by polyoma middle T.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1