{"title":"[多巴胺转运体基因失活的行为、细胞和分子后果]。","authors":"M Jaber, B Bloch, M G Caron, B Giros","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mice lacking the the plasma membrane dopamine transporter (DAT), following gene inactivation or knock out, show an increase in their spontaneous locomotor activity that is of the same magnitude than in normal mice treated with amphetamine or cocaine, known to increase levels of dopamine in the basal ganglia. Many adaptive responses have occurred in these animals than could not compensate for the hyper activity of the dopamine system. Surprisingly, while intracellular dopamine levels were of only 5%, extracellular dopamine levels were increased by 300%. We investigated the regulation of tyrosine hydroxylase (TH), the rate limiting enzyme of dopamine synthesis, and found that this enzyme is regulated at the levels of mRNA, protein, trafficking as well as in its regional, cellular and subcellular organization. Our results establish not only the central importance of the transporter as the key element controlling dopamine levels in the brain, but also its role in the behavioral and biochemical action of amphetamine, cocaine and morphine. In addition, these mice have provided key elements leading to possible clinical and social implications for illnesses such as Parkinson disease, attention deficit disorder and drug addiction.</p>","PeriodicalId":10658,"journal":{"name":"Comptes rendus des seances de la Societe de biologie et de ses filiales","volume":"192 6","pages":"1127-37"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Behavioral, cellular and molecular consequences of the dopamine transporter gene inactivation].\",\"authors\":\"M Jaber, B Bloch, M G Caron, B Giros\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mice lacking the the plasma membrane dopamine transporter (DAT), following gene inactivation or knock out, show an increase in their spontaneous locomotor activity that is of the same magnitude than in normal mice treated with amphetamine or cocaine, known to increase levels of dopamine in the basal ganglia. Many adaptive responses have occurred in these animals than could not compensate for the hyper activity of the dopamine system. Surprisingly, while intracellular dopamine levels were of only 5%, extracellular dopamine levels were increased by 300%. We investigated the regulation of tyrosine hydroxylase (TH), the rate limiting enzyme of dopamine synthesis, and found that this enzyme is regulated at the levels of mRNA, protein, trafficking as well as in its regional, cellular and subcellular organization. Our results establish not only the central importance of the transporter as the key element controlling dopamine levels in the brain, but also its role in the behavioral and biochemical action of amphetamine, cocaine and morphine. In addition, these mice have provided key elements leading to possible clinical and social implications for illnesses such as Parkinson disease, attention deficit disorder and drug addiction.</p>\",\"PeriodicalId\":10658,\"journal\":{\"name\":\"Comptes rendus des seances de la Societe de biologie et de ses filiales\",\"volume\":\"192 6\",\"pages\":\"1127-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes rendus des seances de la Societe de biologie et de ses filiales\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes rendus des seances de la Societe de biologie et de ses filiales","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Behavioral, cellular and molecular consequences of the dopamine transporter gene inactivation].
Mice lacking the the plasma membrane dopamine transporter (DAT), following gene inactivation or knock out, show an increase in their spontaneous locomotor activity that is of the same magnitude than in normal mice treated with amphetamine or cocaine, known to increase levels of dopamine in the basal ganglia. Many adaptive responses have occurred in these animals than could not compensate for the hyper activity of the dopamine system. Surprisingly, while intracellular dopamine levels were of only 5%, extracellular dopamine levels were increased by 300%. We investigated the regulation of tyrosine hydroxylase (TH), the rate limiting enzyme of dopamine synthesis, and found that this enzyme is regulated at the levels of mRNA, protein, trafficking as well as in its regional, cellular and subcellular organization. Our results establish not only the central importance of the transporter as the key element controlling dopamine levels in the brain, but also its role in the behavioral and biochemical action of amphetamine, cocaine and morphine. In addition, these mice have provided key elements leading to possible clinical and social implications for illnesses such as Parkinson disease, attention deficit disorder and drug addiction.