{"title":"将基因工程细胞转移到肾小球。","authors":"M Kitamura","doi":"10.1159/000020611","DOIUrl":null,"url":null,"abstract":"<p><p>In the rat, cultured cells injected into the renal circulation are entrapped in the glomerulus. This peculiar property allows to create chimeric glomeruli in which genetically engineered cells are populated. Using glomerular cells engineered in vitro, it is feasible to generate glomeruli that produce recombinant gene products. This approach would be useful for identification of local function of a certain gene product in the glomerulus and for therapeutic intervention in glomerular disease. Transfer of activated leukocytes to the glomerulus is useful to elucidate pathologic actions of infiltrating cells on the glomerular structure and function. Use of leukocytes in which certain gene function is selectively reinforced or deleted should enable to disclose exact roles of leukocyte-associated genes in glomerular pathophysiology. Transfer of engineered leukocytes also allows to investigate how resident cells modulate the activity of infiltrating cells in normal and pathologic circumstances. This article summarizes current experience with adoptive transfer of engineered cells to the glomerulus and addresses its potential application to kidney research.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":"7 3","pages":"259-66"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020611","citationCount":"2","resultStr":"{\"title\":\"Transfer of genetically engineered cells to the glomerulus.\",\"authors\":\"M Kitamura\",\"doi\":\"10.1159/000020611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the rat, cultured cells injected into the renal circulation are entrapped in the glomerulus. This peculiar property allows to create chimeric glomeruli in which genetically engineered cells are populated. Using glomerular cells engineered in vitro, it is feasible to generate glomeruli that produce recombinant gene products. This approach would be useful for identification of local function of a certain gene product in the glomerulus and for therapeutic intervention in glomerular disease. Transfer of activated leukocytes to the glomerulus is useful to elucidate pathologic actions of infiltrating cells on the glomerular structure and function. Use of leukocytes in which certain gene function is selectively reinforced or deleted should enable to disclose exact roles of leukocyte-associated genes in glomerular pathophysiology. Transfer of engineered leukocytes also allows to investigate how resident cells modulate the activity of infiltrating cells in normal and pathologic circumstances. This article summarizes current experience with adoptive transfer of engineered cells to the glomerulus and addresses its potential application to kidney research.</p>\",\"PeriodicalId\":12179,\"journal\":{\"name\":\"Experimental nephrology\",\"volume\":\"7 3\",\"pages\":\"259-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000020611\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000020611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transfer of genetically engineered cells to the glomerulus.
In the rat, cultured cells injected into the renal circulation are entrapped in the glomerulus. This peculiar property allows to create chimeric glomeruli in which genetically engineered cells are populated. Using glomerular cells engineered in vitro, it is feasible to generate glomeruli that produce recombinant gene products. This approach would be useful for identification of local function of a certain gene product in the glomerulus and for therapeutic intervention in glomerular disease. Transfer of activated leukocytes to the glomerulus is useful to elucidate pathologic actions of infiltrating cells on the glomerular structure and function. Use of leukocytes in which certain gene function is selectively reinforced or deleted should enable to disclose exact roles of leukocyte-associated genes in glomerular pathophysiology. Transfer of engineered leukocytes also allows to investigate how resident cells modulate the activity of infiltrating cells in normal and pathologic circumstances. This article summarizes current experience with adoptive transfer of engineered cells to the glomerulus and addresses its potential application to kidney research.