肾中ROMK钾通道的调节。

H Wald
{"title":"肾中ROMK钾通道的调节。","authors":"H Wald","doi":"10.1159/000020602","DOIUrl":null,"url":null,"abstract":"<p><p>ROMK is a gene encoding inwardly rectifying adenosine triphosphate regulated K+ channels. Alternative splicing of ROMK exons yields several different transcripts, ROMK 1-3, that are differentially expressed along the nephron. Cloned ROMK channels expressed in Xenopus oocytes exhibit properties similar to those of the native low-conductance K+ secretory channels in cortical collecting duct and medullary thick ascending limb, as manifested by use of the patch-clamp technique. These similarities between the cloned and native channels suggest that ROMK represents the low-conductance secretory K+ channels in the kidney. We studied the role of dietary K+ and aldosterone in the regulation of ROMK mRNA expression in the rat kidney. K+ deficiency downregulated ROMK mRNA in cortex and medulla. Adrenalectomy markedly downregulated cortical ROMK, while it increased it in the medulla. In adrenalectomized rats K+ deficiency decreased ROMK mRNA in cortex and medulla similarly to intact rats. Na-K-ATPase subunits alpha1 and beta1 were regulated in parallel to the regulation of ROMK. In the medulla ROMK mRNA correlated highly with serum K+ and with the alpha1 and beta1 subunits of Na-K-ATPase. These results show that cortical ROMK expression is regulated by aldosterone and K+, while the medullary ROMK mRNA is regulated by serum K+, irrespective of aldosterone.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020602","citationCount":"6","resultStr":"{\"title\":\"Regulation of the ROMK potassium channel in the kidney.\",\"authors\":\"H Wald\",\"doi\":\"10.1159/000020602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ROMK is a gene encoding inwardly rectifying adenosine triphosphate regulated K+ channels. Alternative splicing of ROMK exons yields several different transcripts, ROMK 1-3, that are differentially expressed along the nephron. Cloned ROMK channels expressed in Xenopus oocytes exhibit properties similar to those of the native low-conductance K+ secretory channels in cortical collecting duct and medullary thick ascending limb, as manifested by use of the patch-clamp technique. These similarities between the cloned and native channels suggest that ROMK represents the low-conductance secretory K+ channels in the kidney. We studied the role of dietary K+ and aldosterone in the regulation of ROMK mRNA expression in the rat kidney. K+ deficiency downregulated ROMK mRNA in cortex and medulla. Adrenalectomy markedly downregulated cortical ROMK, while it increased it in the medulla. In adrenalectomized rats K+ deficiency decreased ROMK mRNA in cortex and medulla similarly to intact rats. Na-K-ATPase subunits alpha1 and beta1 were regulated in parallel to the regulation of ROMK. In the medulla ROMK mRNA correlated highly with serum K+ and with the alpha1 and beta1 subunits of Na-K-ATPase. These results show that cortical ROMK expression is regulated by aldosterone and K+, while the medullary ROMK mRNA is regulated by serum K+, irrespective of aldosterone.</p>\",\"PeriodicalId\":12179,\"journal\":{\"name\":\"Experimental nephrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000020602\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000020602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

ROMK是一种编码向内校正三磷酸腺苷调节的K+通道的基因。ROMK外显子的选择性剪接产生几种不同的转录本,ROMK 1-3,它们沿着肾元不同地表达。膜片钳技术显示,爪蟾卵母细胞中表达的克隆ROMK通道具有与皮质集管和髓质厚升肢中天然低电导K+分泌通道相似的特性。克隆通道和天然通道之间的这些相似性表明ROMK代表肾脏中低电导分泌K+通道。我们研究了膳食K+和醛固酮在大鼠肾脏中对ROMK mRNA表达的调节作用。K+缺乏下调皮质和髓质的ROMK mRNA。肾上腺切除术显著下调皮质ROMK,而增加髓质的ROMK。在肾上腺切除的大鼠中,K+缺乏降低了皮质和髓质的ROMK mRNA,与完整大鼠相似。na - k - atp酶亚基α 1和β 1的调控与ROMK的调控平行。在髓质中,ROMK mRNA与血清K+以及na -K- atp酶的α 1和β 1亚基高度相关。这些结果表明,皮质ROMK mRNA的表达受醛固酮和K+的调节,而髓质ROMK mRNA受血清K+的调节,与醛固酮无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulation of the ROMK potassium channel in the kidney.

ROMK is a gene encoding inwardly rectifying adenosine triphosphate regulated K+ channels. Alternative splicing of ROMK exons yields several different transcripts, ROMK 1-3, that are differentially expressed along the nephron. Cloned ROMK channels expressed in Xenopus oocytes exhibit properties similar to those of the native low-conductance K+ secretory channels in cortical collecting duct and medullary thick ascending limb, as manifested by use of the patch-clamp technique. These similarities between the cloned and native channels suggest that ROMK represents the low-conductance secretory K+ channels in the kidney. We studied the role of dietary K+ and aldosterone in the regulation of ROMK mRNA expression in the rat kidney. K+ deficiency downregulated ROMK mRNA in cortex and medulla. Adrenalectomy markedly downregulated cortical ROMK, while it increased it in the medulla. In adrenalectomized rats K+ deficiency decreased ROMK mRNA in cortex and medulla similarly to intact rats. Na-K-ATPase subunits alpha1 and beta1 were regulated in parallel to the regulation of ROMK. In the medulla ROMK mRNA correlated highly with serum K+ and with the alpha1 and beta1 subunits of Na-K-ATPase. These results show that cortical ROMK expression is regulated by aldosterone and K+, while the medullary ROMK mRNA is regulated by serum K+, irrespective of aldosterone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unexpected renal actions of erythropoietin. Coagulation, fibrinolysis and angiogenesis: new insights from knockout mice. Role of the PDZ scaffolding protein in tubule cells in maintenance of polarised function. Myofibroblast differentiation: plasma membrane microdomains and cell phenotype. Regulation of inducible class II MHC, costimulatory molecules, and cytokine expression in TGF-beta1 knockout renal epithelial cells: effect of exogenous TGF-beta1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1