基于RAPD图谱的黄花蒿化学型变异遗传特征研究。

R S Sangwan, N S Sangwan, D C Jain, S Kumar, S A Ranade
{"title":"基于RAPD图谱的黄花蒿化学型变异遗传特征研究。","authors":"R S Sangwan,&nbsp;N S Sangwan,&nbsp;D C Jain,&nbsp;S Kumar,&nbsp;S A Ranade","doi":"10.1080/15216549900202053","DOIUrl":null,"url":null,"abstract":"<p><p>The annual herbaceous plant, Artemisia annua L., belonging to family Asteraceae, is the natural source of the highly potent antimalarial compound, artemisinin, besides producing valuable essential oil. The plant is at present the sole commercial source for artemisinin production since all the chemical syntheses are non-viable. Therefore, economic and practical considerations dictate that plants with maximum content of artemisinin be found and/or ways to increase their artemisinin content be sought. The key to this selection and breeding is a comprehension of chemical and genetic variability and suitable selection(s) of elites from within the available population. In the present study, RAPD analyses of selected chemotypes from a decade old introduced population in India were carried out using arbitrary primers. The RAPD data clearly indicate the distinction amongst these plants. Further, the detection of highly polymorphic profiles (97 polymorphic markers out of a total of 101 markers) suggests the existence of very high levels of genetic variation in the Indian population despite geographical isolation and opens out a strong possibility of further genetic improvement for superior artemisinin content. UPGMA analyses of RAPD and phytochemical trait data indicate that the wide phytochemical diversity is included within the genetic diversity. These results further support the prospects for selection and breeding of superior artemisinin containing lines.</p>","PeriodicalId":8770,"journal":{"name":"Biochemistry and molecular biology international","volume":"47 6","pages":"935-44"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15216549900202053","citationCount":"78","resultStr":"{\"title\":\"RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L.\",\"authors\":\"R S Sangwan,&nbsp;N S Sangwan,&nbsp;D C Jain,&nbsp;S Kumar,&nbsp;S A Ranade\",\"doi\":\"10.1080/15216549900202053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The annual herbaceous plant, Artemisia annua L., belonging to family Asteraceae, is the natural source of the highly potent antimalarial compound, artemisinin, besides producing valuable essential oil. The plant is at present the sole commercial source for artemisinin production since all the chemical syntheses are non-viable. Therefore, economic and practical considerations dictate that plants with maximum content of artemisinin be found and/or ways to increase their artemisinin content be sought. The key to this selection and breeding is a comprehension of chemical and genetic variability and suitable selection(s) of elites from within the available population. In the present study, RAPD analyses of selected chemotypes from a decade old introduced population in India were carried out using arbitrary primers. The RAPD data clearly indicate the distinction amongst these plants. Further, the detection of highly polymorphic profiles (97 polymorphic markers out of a total of 101 markers) suggests the existence of very high levels of genetic variation in the Indian population despite geographical isolation and opens out a strong possibility of further genetic improvement for superior artemisinin content. UPGMA analyses of RAPD and phytochemical trait data indicate that the wide phytochemical diversity is included within the genetic diversity. These results further support the prospects for selection and breeding of superior artemisinin containing lines.</p>\",\"PeriodicalId\":8770,\"journal\":{\"name\":\"Biochemistry and molecular biology international\",\"volume\":\"47 6\",\"pages\":\"935-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15216549900202053\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and molecular biology international\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15216549900202053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15216549900202053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

一年生草本植物,黄花蒿属菊科,是高效抗疟化合物青蒿素的天然来源,除了生产有价值的精油。该工厂目前是生产青蒿素的唯一商业来源,因为所有化学合成都是不可行的。因此,从经济和实际考虑,必须找到青蒿素含量最高的植物和/或寻找增加其青蒿素含量的方法。这种选择和育种的关键是对化学和遗传变异的理解,以及从可用群体中选择合适的精英。在本研究中,利用任意引物对印度10年引种种群中选择的化学型进行了RAPD分析。RAPD数据清楚地显示了这些植物之间的区别。此外,检测到高度多态性谱(总共101个多态性标记中有97个多态性标记)表明,尽管地理隔离,印度人口中存在非常高水平的遗传变异,这为进一步进行遗传改良以获得更高的青蒿素含量提供了很大的可能性。RAPD和植物化学性状的UPGMA分析表明,广泛的植物化学多样性包含在遗传多样性中。这些结果进一步支持了优质含青蒿素品系的选择和育种前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L.

The annual herbaceous plant, Artemisia annua L., belonging to family Asteraceae, is the natural source of the highly potent antimalarial compound, artemisinin, besides producing valuable essential oil. The plant is at present the sole commercial source for artemisinin production since all the chemical syntheses are non-viable. Therefore, economic and practical considerations dictate that plants with maximum content of artemisinin be found and/or ways to increase their artemisinin content be sought. The key to this selection and breeding is a comprehension of chemical and genetic variability and suitable selection(s) of elites from within the available population. In the present study, RAPD analyses of selected chemotypes from a decade old introduced population in India were carried out using arbitrary primers. The RAPD data clearly indicate the distinction amongst these plants. Further, the detection of highly polymorphic profiles (97 polymorphic markers out of a total of 101 markers) suggests the existence of very high levels of genetic variation in the Indian population despite geographical isolation and opens out a strong possibility of further genetic improvement for superior artemisinin content. UPGMA analyses of RAPD and phytochemical trait data indicate that the wide phytochemical diversity is included within the genetic diversity. These results further support the prospects for selection and breeding of superior artemisinin containing lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrated electron-induced inactivation of tyrosinase in aqueous solution by exposure to cobalt-60 gamma-rays. II. Catecholase activity. RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L. Porphyria-induced hepatic porphyrinogen carboxy-lyase inhibitor and its interaction with the active site(s) of the enzyme. Total reactive antioxidant potential in human saliva of smokers and non-smokers. The lysine and methionine rich basic subunit of buckwheat grain legumin: some results of a structural study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1