{"title":"大肠杆菌热休克dnaK和dnaJ基因突变的生理后果。","authors":"K I Wolska, J Paciorek, K Kardyś","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the heat shock genes, dnaK and dnaJ, cause severe defects of several cellular functions. Null dnaJ and dnaKdnaJ mutations can be transduced in a restricted range of temperature. The efficiency of transformation with three unrelated plasmids, viz pACYC184, pBR322 and pSC101, is two times lower in dnaK mutants while the dnaJ mutant is characterized by slightly impaired transformation with pSC101 only. The lack of DnaJ function negatively influences the stability of pSC101 at 42 degrees C, and this plasmid cannot be stably maintained at 30 degrees C in the delta dnaKdnaJ mutant. The double deletion mutant, delta dbaKdnaJ, is characterized by impaired osmoadaptation. The galactokinase content is lower in both mutants tested compared with wild-type strains even at 30 degrees C. The efficient complementation of some of these defects by the wild-type alleles present on low-copy number plasmid was achieved.</p>","PeriodicalId":18494,"journal":{"name":"Microbios","volume":"97 386","pages":"55-67"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological consequences of mutations in Escherichia coli heat shock dnaK and dnaJ genes.\",\"authors\":\"K I Wolska, J Paciorek, K Kardyś\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in the heat shock genes, dnaK and dnaJ, cause severe defects of several cellular functions. Null dnaJ and dnaKdnaJ mutations can be transduced in a restricted range of temperature. The efficiency of transformation with three unrelated plasmids, viz pACYC184, pBR322 and pSC101, is two times lower in dnaK mutants while the dnaJ mutant is characterized by slightly impaired transformation with pSC101 only. The lack of DnaJ function negatively influences the stability of pSC101 at 42 degrees C, and this plasmid cannot be stably maintained at 30 degrees C in the delta dnaKdnaJ mutant. The double deletion mutant, delta dbaKdnaJ, is characterized by impaired osmoadaptation. The galactokinase content is lower in both mutants tested compared with wild-type strains even at 30 degrees C. The efficient complementation of some of these defects by the wild-type alleles present on low-copy number plasmid was achieved.</p>\",\"PeriodicalId\":18494,\"journal\":{\"name\":\"Microbios\",\"volume\":\"97 386\",\"pages\":\"55-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbios\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbios","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physiological consequences of mutations in Escherichia coli heat shock dnaK and dnaJ genes.
Mutations in the heat shock genes, dnaK and dnaJ, cause severe defects of several cellular functions. Null dnaJ and dnaKdnaJ mutations can be transduced in a restricted range of temperature. The efficiency of transformation with three unrelated plasmids, viz pACYC184, pBR322 and pSC101, is two times lower in dnaK mutants while the dnaJ mutant is characterized by slightly impaired transformation with pSC101 only. The lack of DnaJ function negatively influences the stability of pSC101 at 42 degrees C, and this plasmid cannot be stably maintained at 30 degrees C in the delta dnaKdnaJ mutant. The double deletion mutant, delta dbaKdnaJ, is characterized by impaired osmoadaptation. The galactokinase content is lower in both mutants tested compared with wild-type strains even at 30 degrees C. The efficient complementation of some of these defects by the wild-type alleles present on low-copy number plasmid was achieved.