A R Bhatti, K Kumar, C Stobo, G R Chaudhry, J M Ingram
{"title":"高温诱导铜绿假单胞菌的抗生素敏感性变化。","authors":"A R Bhatti, K Kumar, C Stobo, G R Chaudhry, J M Ingram","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudomonas aeruginosa, which was resistant to a wide variety of antibiotics, became sensitive to several of these antibiotics when grown and tested at 46 degrees C. Cell wall antibiotics such as penicillin G and ampicillin were only effective when added to cells growing at 46 degrees C prior to a temperature shift to 37 degrees C. Antibiotics which penetrate the cytoplasmic membrane to express their inhibiting action present a pattern different from those which are active against the outer cell wall. In order that these compounds be effective, the permeability of the cytoplasmic membrane must be further altered with agents such as EDTA which allow the penetration of actinomycin D. Inhibitors of protein synthesis, such as streptomycin and chloramphenicol, have increased access to their sites of action in cells grown at 46 degrees C. Cells grown at 46 degrees C have 40% less lipopolysaccharide (LPS) than cells grown at 37 degrees C and the LPS aggregates were of large molecular size in cells grown at 46 degrees C. Growth at 46 degrees C affects the permeability properties of the outer cell wall more than the permeability properties of the cytoplasmic membrane and this was due, in part, to the selective release of LPS of LPS-protein complexes at elevated growth temperatures.</p>","PeriodicalId":18494,"journal":{"name":"Microbios","volume":"97 387","pages":"103-15"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High temperature induced antibiotic sensitivity changes in Pseudomonas aeruginosa.\",\"authors\":\"A R Bhatti, K Kumar, C Stobo, G R Chaudhry, J M Ingram\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pseudomonas aeruginosa, which was resistant to a wide variety of antibiotics, became sensitive to several of these antibiotics when grown and tested at 46 degrees C. Cell wall antibiotics such as penicillin G and ampicillin were only effective when added to cells growing at 46 degrees C prior to a temperature shift to 37 degrees C. Antibiotics which penetrate the cytoplasmic membrane to express their inhibiting action present a pattern different from those which are active against the outer cell wall. In order that these compounds be effective, the permeability of the cytoplasmic membrane must be further altered with agents such as EDTA which allow the penetration of actinomycin D. Inhibitors of protein synthesis, such as streptomycin and chloramphenicol, have increased access to their sites of action in cells grown at 46 degrees C. Cells grown at 46 degrees C have 40% less lipopolysaccharide (LPS) than cells grown at 37 degrees C and the LPS aggregates were of large molecular size in cells grown at 46 degrees C. Growth at 46 degrees C affects the permeability properties of the outer cell wall more than the permeability properties of the cytoplasmic membrane and this was due, in part, to the selective release of LPS of LPS-protein complexes at elevated growth temperatures.</p>\",\"PeriodicalId\":18494,\"journal\":{\"name\":\"Microbios\",\"volume\":\"97 387\",\"pages\":\"103-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbios\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbios","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High temperature induced antibiotic sensitivity changes in Pseudomonas aeruginosa.
Pseudomonas aeruginosa, which was resistant to a wide variety of antibiotics, became sensitive to several of these antibiotics when grown and tested at 46 degrees C. Cell wall antibiotics such as penicillin G and ampicillin were only effective when added to cells growing at 46 degrees C prior to a temperature shift to 37 degrees C. Antibiotics which penetrate the cytoplasmic membrane to express their inhibiting action present a pattern different from those which are active against the outer cell wall. In order that these compounds be effective, the permeability of the cytoplasmic membrane must be further altered with agents such as EDTA which allow the penetration of actinomycin D. Inhibitors of protein synthesis, such as streptomycin and chloramphenicol, have increased access to their sites of action in cells grown at 46 degrees C. Cells grown at 46 degrees C have 40% less lipopolysaccharide (LPS) than cells grown at 37 degrees C and the LPS aggregates were of large molecular size in cells grown at 46 degrees C. Growth at 46 degrees C affects the permeability properties of the outer cell wall more than the permeability properties of the cytoplasmic membrane and this was due, in part, to the selective release of LPS of LPS-protein complexes at elevated growth temperatures.