{"title":"去甲肾上腺素对常氧、低氧和高碳酸血症下蓝鲸红细胞悬液呼吸状态的影响:α 1受体参与。","authors":"M Kaloyianni, N Giagtzoglou, D Economidis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of normoxia, hypoxia and hypercapnia on the extracellular pH, partial pressure carbon dioxide (pCO2), partial pressure oxygen (pO2) and HCO3- levels after noradrenaline treatment of Rana balcanica erythrocytes, was investigated. Noradrenaline caused a significant reduction of the extracellular pH which may have been due to the activation of red blood cell Na+/H+ exchange. Significant falls in the partial extracellular pressure of CO2 and O2 were evident. The initial reduction in extracellular pCO2 and pO2 was followed by a rise reflecting the desensitization of the Na+/H+ exchange after 15 min of hormone stimulation. Both hypercapnia and hypoxia increased the magnitude of these changes in relation to normoxia, although the greatest changes were observed under hypercapnic conditions. The involvement of alpha 1 receptors in regulating the concentration of respiratory gases after catecholamine stimulation was demonstrated. It is suggested that these responses increased the effectiveness of gas transfer over the respiratory surfaces.</p>","PeriodicalId":11078,"journal":{"name":"Cytobios","volume":"98 388","pages":"77-94"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of noradrenaline on the respiratory status of Rana balcanica red cell suspension under normoxia, hypoxia and hypercapnia: alpha 1-receptor involvement.\",\"authors\":\"M Kaloyianni, N Giagtzoglou, D Economidis\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of normoxia, hypoxia and hypercapnia on the extracellular pH, partial pressure carbon dioxide (pCO2), partial pressure oxygen (pO2) and HCO3- levels after noradrenaline treatment of Rana balcanica erythrocytes, was investigated. Noradrenaline caused a significant reduction of the extracellular pH which may have been due to the activation of red blood cell Na+/H+ exchange. Significant falls in the partial extracellular pressure of CO2 and O2 were evident. The initial reduction in extracellular pCO2 and pO2 was followed by a rise reflecting the desensitization of the Na+/H+ exchange after 15 min of hormone stimulation. Both hypercapnia and hypoxia increased the magnitude of these changes in relation to normoxia, although the greatest changes were observed under hypercapnic conditions. The involvement of alpha 1 receptors in regulating the concentration of respiratory gases after catecholamine stimulation was demonstrated. It is suggested that these responses increased the effectiveness of gas transfer over the respiratory surfaces.</p>\",\"PeriodicalId\":11078,\"journal\":{\"name\":\"Cytobios\",\"volume\":\"98 388\",\"pages\":\"77-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytobios\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytobios","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of noradrenaline on the respiratory status of Rana balcanica red cell suspension under normoxia, hypoxia and hypercapnia: alpha 1-receptor involvement.
The effect of normoxia, hypoxia and hypercapnia on the extracellular pH, partial pressure carbon dioxide (pCO2), partial pressure oxygen (pO2) and HCO3- levels after noradrenaline treatment of Rana balcanica erythrocytes, was investigated. Noradrenaline caused a significant reduction of the extracellular pH which may have been due to the activation of red blood cell Na+/H+ exchange. Significant falls in the partial extracellular pressure of CO2 and O2 were evident. The initial reduction in extracellular pCO2 and pO2 was followed by a rise reflecting the desensitization of the Na+/H+ exchange after 15 min of hormone stimulation. Both hypercapnia and hypoxia increased the magnitude of these changes in relation to normoxia, although the greatest changes were observed under hypercapnic conditions. The involvement of alpha 1 receptors in regulating the concentration of respiratory gases after catecholamine stimulation was demonstrated. It is suggested that these responses increased the effectiveness of gas transfer over the respiratory surfaces.