踏板节奏对高性能少年耐力自行车运动员累积氧亏、最大有氧能力和血乳酸过渡阈值的影响。

S M Woolford, R T Withers, N P Craig, P C Bourdon, T Stanef, I McKenzie
{"title":"踏板节奏对高性能少年耐力自行车运动员累积氧亏、最大有氧能力和血乳酸过渡阈值的影响。","authors":"S M Woolford,&nbsp;R T Withers,&nbsp;N P Craig,&nbsp;P C Bourdon,&nbsp;T Stanef,&nbsp;I McKenzie","doi":"10.1007/s004210050594","DOIUrl":null,"url":null,"abstract":"<p><p>In this study we investigated the effect of pedal cadence on the cycling economy, accumulated oxygen deficit (AOD), maximal oxygen consumption (VO2max) and blood lactate transition thresholds of ten high-performance junior endurance cyclists [mean (SD): 17.4 (0.4) years; 183.8 (3.5) cm, 71.56 (3.75) kg]. Cycling economy was measured on three ergometers with the specific cadence requirements of: 90-100 rpm for the road dual chain ring (RDCR90-100 rpm) ergometer, 120-130 rpm for the track dual chain ring (TDCR120-130 rpm) ergometer, and 90-130 rpm for the track single chain ring (TSCR90-130 rpm) ergometer. AODs were then estimated using the regression of oxygen consumption (VO2) on power output for each of these ergometers, in conjunction with the data from a 2-min supramaximal paced effort on the TSCR90-130 rpm ergometer. A regression of VO2 on power output for each ergometer resulted in significant differences (P<0.001) between the slopes and intercepts that produced a lower AOD for the RDCR90-100 rpm [2.79 (0.43) l] compared with those for the TDCR120-130 rpm [4.11 (0.78) l] and TSCR90-130 rpm [4.06 (0.84) l]. While there were no statistically significant VO2max differences (P = 0.153) between the three treatments [RDCR90-100 rpm: 5.31 (0.24) l x min(-1); TDCR120-130 rpm; 5.33 (0.25) 1 x min(-1); TSCR90-130 rpm: 5.44 (0.27) l x min(-1)], all pairwise comparisons of the power output at which VO2max occurred were significantly different (P<0.001). Statistically significant differences were identified between the RDCR90-100 rpm and TDCR120-130 rpm tests for power output (P = 0.003) and blood lactate (P = 0.003) at the lactate threshold (Thla-), and for power output (P = 0.005) at the individual anaerobic threshold (Thiat). Our findings emphasise that pedal cadence specificity is essential when assessing the cycling economy, AOD and blood lactate transition thresholds of high-performance junior endurance cyclists.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050594","citationCount":"41","resultStr":"{\"title\":\"Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.\",\"authors\":\"S M Woolford,&nbsp;R T Withers,&nbsp;N P Craig,&nbsp;P C Bourdon,&nbsp;T Stanef,&nbsp;I McKenzie\",\"doi\":\"10.1007/s004210050594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study we investigated the effect of pedal cadence on the cycling economy, accumulated oxygen deficit (AOD), maximal oxygen consumption (VO2max) and blood lactate transition thresholds of ten high-performance junior endurance cyclists [mean (SD): 17.4 (0.4) years; 183.8 (3.5) cm, 71.56 (3.75) kg]. Cycling economy was measured on three ergometers with the specific cadence requirements of: 90-100 rpm for the road dual chain ring (RDCR90-100 rpm) ergometer, 120-130 rpm for the track dual chain ring (TDCR120-130 rpm) ergometer, and 90-130 rpm for the track single chain ring (TSCR90-130 rpm) ergometer. AODs were then estimated using the regression of oxygen consumption (VO2) on power output for each of these ergometers, in conjunction with the data from a 2-min supramaximal paced effort on the TSCR90-130 rpm ergometer. A regression of VO2 on power output for each ergometer resulted in significant differences (P<0.001) between the slopes and intercepts that produced a lower AOD for the RDCR90-100 rpm [2.79 (0.43) l] compared with those for the TDCR120-130 rpm [4.11 (0.78) l] and TSCR90-130 rpm [4.06 (0.84) l]. While there were no statistically significant VO2max differences (P = 0.153) between the three treatments [RDCR90-100 rpm: 5.31 (0.24) l x min(-1); TDCR120-130 rpm; 5.33 (0.25) 1 x min(-1); TSCR90-130 rpm: 5.44 (0.27) l x min(-1)], all pairwise comparisons of the power output at which VO2max occurred were significantly different (P<0.001). Statistically significant differences were identified between the RDCR90-100 rpm and TDCR120-130 rpm tests for power output (P = 0.003) and blood lactate (P = 0.003) at the lactate threshold (Thla-), and for power output (P = 0.005) at the individual anaerobic threshold (Thiat). Our findings emphasise that pedal cadence specificity is essential when assessing the cycling economy, AOD and blood lactate transition thresholds of high-performance junior endurance cyclists.</p>\",\"PeriodicalId\":11936,\"journal\":{\"name\":\"European Journal of Applied Physiology and Occupational Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004210050594\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology and Occupational Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004210050594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

在这项研究中,我们研究了踏板节奏对10名高性能少年耐力自行车运动员的循环经济性、累积氧赤字(AOD)、最大耗氧量(VO2max)和血乳酸过渡阈值的影响[平均(SD): 17.4(0.4)岁;183.8(3.5)厘米,71.56(3.75)公斤]。在三个测力仪上测量循环经济性,具体的节奏要求为:道路双链环(RDCR90-100 rpm)测力仪90-100 rpm,轨道双链环(TDCR120-130 rpm)测力仪120-130 rpm,轨道单链环(TSCR90-130 rpm)测力仪90-130 rpm。然后,结合TSCR90-130 rpm测功仪上2分钟最大速度训练的数据,利用对每个测功仪功率输出的耗氧量(VO2)的回归来估计aod。VO2对各测功仪输出功率的回归结果有显著差异(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.

In this study we investigated the effect of pedal cadence on the cycling economy, accumulated oxygen deficit (AOD), maximal oxygen consumption (VO2max) and blood lactate transition thresholds of ten high-performance junior endurance cyclists [mean (SD): 17.4 (0.4) years; 183.8 (3.5) cm, 71.56 (3.75) kg]. Cycling economy was measured on three ergometers with the specific cadence requirements of: 90-100 rpm for the road dual chain ring (RDCR90-100 rpm) ergometer, 120-130 rpm for the track dual chain ring (TDCR120-130 rpm) ergometer, and 90-130 rpm for the track single chain ring (TSCR90-130 rpm) ergometer. AODs were then estimated using the regression of oxygen consumption (VO2) on power output for each of these ergometers, in conjunction with the data from a 2-min supramaximal paced effort on the TSCR90-130 rpm ergometer. A regression of VO2 on power output for each ergometer resulted in significant differences (P<0.001) between the slopes and intercepts that produced a lower AOD for the RDCR90-100 rpm [2.79 (0.43) l] compared with those for the TDCR120-130 rpm [4.11 (0.78) l] and TSCR90-130 rpm [4.06 (0.84) l]. While there were no statistically significant VO2max differences (P = 0.153) between the three treatments [RDCR90-100 rpm: 5.31 (0.24) l x min(-1); TDCR120-130 rpm; 5.33 (0.25) 1 x min(-1); TSCR90-130 rpm: 5.44 (0.27) l x min(-1)], all pairwise comparisons of the power output at which VO2max occurred were significantly different (P<0.001). Statistically significant differences were identified between the RDCR90-100 rpm and TDCR120-130 rpm tests for power output (P = 0.003) and blood lactate (P = 0.003) at the lactate threshold (Thla-), and for power output (P = 0.005) at the individual anaerobic threshold (Thiat). Our findings emphasise that pedal cadence specificity is essential when assessing the cycling economy, AOD and blood lactate transition thresholds of high-performance junior endurance cyclists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees In vivo vibrational wave propagation in human tibiae at different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1