M J Ashenden, C J Gore, D T Martin, G P Dobson, A G Hahn
{"title":"12天“高生活,低训练”训练营对优秀女性公路自行车运动员网织红细胞生成和血红蛋白质量的影响。","authors":"M J Ashenden, C J Gore, D T Martin, G P Dobson, A G Hahn","doi":"10.1007/s004210050620","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to document the effect of \"living high, training low\" on the red blood cell production of elite female cyclists. Six members of the Australian National Women's road cycling squad slept for 12 nights at a simulated altitude of 2650 m in normobaric hypoxia (HIGH), while 6 team-mates slept at an altitude of 600 m (CONTROL). HIGH and CONTROL subjects trained and raced as a group throughout the 70-day study. Baseline levels of reticulocyte parameters sensitive to changes in erythropoeisis were measured 21 days and 1 day prior to sleeping in hypoxia (D1 and D20, respectively). These measures were repeated after 7 nights (D27) and 12 nights (D34) of simulated altitude exposure, and again 15 days (D48) and 33 days (D67) after leaving the altitude house. There was no increase in reticulocyte production, nor any change in reticulocyte parameters in either the HIGH or CONTROL groups. This lack of haematological response was substantiated by total haemoglobin mass measures (CO-rebreathing), which did not change when measured on D1, D20, D34 or D67. We conclude that in elite female road cyclists, 12 nights of exposure to normobaric hypoxia (2650 m) is not sufficient to either stimulate reticulocyte production or increase haemoglobin mass.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050620","citationCount":"109","resultStr":"{\"title\":\"Effects of a 12-day \\\"live high, train low\\\" camp on reticulocyte production and haemoglobin mass in elite female road cyclists.\",\"authors\":\"M J Ashenden, C J Gore, D T Martin, G P Dobson, A G Hahn\",\"doi\":\"10.1007/s004210050620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to document the effect of \\\"living high, training low\\\" on the red blood cell production of elite female cyclists. Six members of the Australian National Women's road cycling squad slept for 12 nights at a simulated altitude of 2650 m in normobaric hypoxia (HIGH), while 6 team-mates slept at an altitude of 600 m (CONTROL). HIGH and CONTROL subjects trained and raced as a group throughout the 70-day study. Baseline levels of reticulocyte parameters sensitive to changes in erythropoeisis were measured 21 days and 1 day prior to sleeping in hypoxia (D1 and D20, respectively). These measures were repeated after 7 nights (D27) and 12 nights (D34) of simulated altitude exposure, and again 15 days (D48) and 33 days (D67) after leaving the altitude house. There was no increase in reticulocyte production, nor any change in reticulocyte parameters in either the HIGH or CONTROL groups. This lack of haematological response was substantiated by total haemoglobin mass measures (CO-rebreathing), which did not change when measured on D1, D20, D34 or D67. We conclude that in elite female road cyclists, 12 nights of exposure to normobaric hypoxia (2650 m) is not sufficient to either stimulate reticulocyte production or increase haemoglobin mass.</p>\",\"PeriodicalId\":11936,\"journal\":{\"name\":\"European Journal of Applied Physiology and Occupational Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004210050620\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology and Occupational Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004210050620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of a 12-day "live high, train low" camp on reticulocyte production and haemoglobin mass in elite female road cyclists.
The aim of this study was to document the effect of "living high, training low" on the red blood cell production of elite female cyclists. Six members of the Australian National Women's road cycling squad slept for 12 nights at a simulated altitude of 2650 m in normobaric hypoxia (HIGH), while 6 team-mates slept at an altitude of 600 m (CONTROL). HIGH and CONTROL subjects trained and raced as a group throughout the 70-day study. Baseline levels of reticulocyte parameters sensitive to changes in erythropoeisis were measured 21 days and 1 day prior to sleeping in hypoxia (D1 and D20, respectively). These measures were repeated after 7 nights (D27) and 12 nights (D34) of simulated altitude exposure, and again 15 days (D48) and 33 days (D67) after leaving the altitude house. There was no increase in reticulocyte production, nor any change in reticulocyte parameters in either the HIGH or CONTROL groups. This lack of haematological response was substantiated by total haemoglobin mass measures (CO-rebreathing), which did not change when measured on D1, D20, D34 or D67. We conclude that in elite female road cyclists, 12 nights of exposure to normobaric hypoxia (2650 m) is not sufficient to either stimulate reticulocyte production or increase haemoglobin mass.