皮划艇在次最大和最大速度下的能量学。

P Zamparo, C Capelli, G Guerrini
{"title":"皮划艇在次最大和最大速度下的能量学。","authors":"P Zamparo,&nbsp;C Capelli,&nbsp;G Guerrini","doi":"10.1007/s004210050632","DOIUrl":null,"url":null,"abstract":"<p><p>The energy cost of kayaking per unit distance (C(k), kJ x m(-1)) was assessed in eight middle- to high-class athletes (three males and five females; 45-76 kg body mass; 1.50-1.88 m height; 15-32 years of age) at submaximal and maximal speeds. At submaximal speeds, C(k) was measured by dividing the steady-state oxygen consumption (VO(2), l x s(-1)) by the speed (v, m x s(-1)), assuming an energy equivalent of 20.9 kJ x l O(-1)(2). At maximal speeds, C(k) was calculated from the ratio of the total metabolic energy expenditure (E, kJ) to the distance (d, m). E was assumed to be the sum of three terms, as originally proposed by Wilkie (1980): E = AnS + alphaVO(2max) x t-alphaVO(2max) x tau(1-e(-t x tau(-1))), were alpha is the energy equivalent of O(2) (20.9 kJ x l O(2)(-1)), tau is the time constant with which VO(2max) is attained at the onset of exercise at the muscular level, AnS is the amount of energy derived from anaerobic energy utilization, t is the performance time, and VO(2max) is the net maximal VO(2). Individual VO(2max) was obtained from the VO(2) measured during the last minute of the 1000-m or 2000-m maximal run. The average metabolic power output (E, kW) amounted to 141% and 102% of the individual maximal aerobic power (VO(2max)) from the shortest (250 m) to the longest (2000 m) distance, respectively. The average (SD) power provided by oxidative processes increased with the distance covered [from 0.64 (0.14) kW at 250 m to 1.02 (0.31) kW at 2000 m], whereas that provided by anaerobic sources showed the opposite trend. The net C(k) was a continuous power function of the speed over the entire range of velocities from 2.88 to 4.45 m x s(-1): C(k) = 0.02 x v(2.26) (r = 0.937, n = 32).</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":"80 6","pages":"542-8"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050632","citationCount":"64","resultStr":"{\"title\":\"Energetics of kayaking at submaximal and maximal speeds.\",\"authors\":\"P Zamparo,&nbsp;C Capelli,&nbsp;G Guerrini\",\"doi\":\"10.1007/s004210050632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The energy cost of kayaking per unit distance (C(k), kJ x m(-1)) was assessed in eight middle- to high-class athletes (three males and five females; 45-76 kg body mass; 1.50-1.88 m height; 15-32 years of age) at submaximal and maximal speeds. At submaximal speeds, C(k) was measured by dividing the steady-state oxygen consumption (VO(2), l x s(-1)) by the speed (v, m x s(-1)), assuming an energy equivalent of 20.9 kJ x l O(-1)(2). At maximal speeds, C(k) was calculated from the ratio of the total metabolic energy expenditure (E, kJ) to the distance (d, m). E was assumed to be the sum of three terms, as originally proposed by Wilkie (1980): E = AnS + alphaVO(2max) x t-alphaVO(2max) x tau(1-e(-t x tau(-1))), were alpha is the energy equivalent of O(2) (20.9 kJ x l O(2)(-1)), tau is the time constant with which VO(2max) is attained at the onset of exercise at the muscular level, AnS is the amount of energy derived from anaerobic energy utilization, t is the performance time, and VO(2max) is the net maximal VO(2). Individual VO(2max) was obtained from the VO(2) measured during the last minute of the 1000-m or 2000-m maximal run. The average metabolic power output (E, kW) amounted to 141% and 102% of the individual maximal aerobic power (VO(2max)) from the shortest (250 m) to the longest (2000 m) distance, respectively. The average (SD) power provided by oxidative processes increased with the distance covered [from 0.64 (0.14) kW at 250 m to 1.02 (0.31) kW at 2000 m], whereas that provided by anaerobic sources showed the opposite trend. The net C(k) was a continuous power function of the speed over the entire range of velocities from 2.88 to 4.45 m x s(-1): C(k) = 0.02 x v(2.26) (r = 0.937, n = 32).</p>\",\"PeriodicalId\":11936,\"journal\":{\"name\":\"European Journal of Applied Physiology and Occupational Physiology\",\"volume\":\"80 6\",\"pages\":\"542-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004210050632\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology and Occupational Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004210050632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

对8名中高水平运动员(男3名,女5名;体重45-76公斤;1.50-1.88米高;15-32岁)以次最大和最大速度。在次最大速度下,通过将稳态耗氧量(VO(2), l x s(-1))除以速度(v, m x s(-1))来测量C(k),假设能量相当于20.9 kJ x l O(-1)(2)。在最大速度下,C(k)由总代谢能量消耗(E, kJ)与距离(d, m)之比计算,假设E为三项之和,最初由Wilkie(1980)提出:E = AnS + alphaVO(2max) x t-alphaVO(2max) x tau(1-e(-t x tau(-1))),其中alpha是O(2)(20.9 kJ x l O(2)(-1))的能量当量,tau是在肌肉水平运动开始时达到VO(2max)的时间常数,AnS是来自无氧能量利用的能量量,t是表现时间,VO(2max)是净最大VO(2)。个人VO(2max)由1000米或2000米最大跑最后一分钟测量的VO(2)获得。从最短距离(250米)到最长距离(2000米),平均代谢能输出(E, kW)分别达到个体最大有氧能(VO(2max))的141%和102%。氧化过程提供的平均(SD)功率随着距离的增加而增加[从250 m处的0.64 (0.14)kW增加到2000 m处的1.02 (0.31)kW],而厌氧源提供的趋势相反。净C(k)是在2.88至4.45 m x s(-1)的整个速度范围内速度的连续幂函数:C(k) = 0.02 x v(2.26) (r = 0.937, n = 32)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energetics of kayaking at submaximal and maximal speeds.

The energy cost of kayaking per unit distance (C(k), kJ x m(-1)) was assessed in eight middle- to high-class athletes (three males and five females; 45-76 kg body mass; 1.50-1.88 m height; 15-32 years of age) at submaximal and maximal speeds. At submaximal speeds, C(k) was measured by dividing the steady-state oxygen consumption (VO(2), l x s(-1)) by the speed (v, m x s(-1)), assuming an energy equivalent of 20.9 kJ x l O(-1)(2). At maximal speeds, C(k) was calculated from the ratio of the total metabolic energy expenditure (E, kJ) to the distance (d, m). E was assumed to be the sum of three terms, as originally proposed by Wilkie (1980): E = AnS + alphaVO(2max) x t-alphaVO(2max) x tau(1-e(-t x tau(-1))), were alpha is the energy equivalent of O(2) (20.9 kJ x l O(2)(-1)), tau is the time constant with which VO(2max) is attained at the onset of exercise at the muscular level, AnS is the amount of energy derived from anaerobic energy utilization, t is the performance time, and VO(2max) is the net maximal VO(2). Individual VO(2max) was obtained from the VO(2) measured during the last minute of the 1000-m or 2000-m maximal run. The average metabolic power output (E, kW) amounted to 141% and 102% of the individual maximal aerobic power (VO(2max)) from the shortest (250 m) to the longest (2000 m) distance, respectively. The average (SD) power provided by oxidative processes increased with the distance covered [from 0.64 (0.14) kW at 250 m to 1.02 (0.31) kW at 2000 m], whereas that provided by anaerobic sources showed the opposite trend. The net C(k) was a continuous power function of the speed over the entire range of velocities from 2.88 to 4.45 m x s(-1): C(k) = 0.02 x v(2.26) (r = 0.937, n = 32).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees In vivo vibrational wave propagation in human tibiae at different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1