双侧组织的上肢生理性震颤。

S Morrison, K M Newell
{"title":"双侧组织的上肢生理性震颤。","authors":"S Morrison,&nbsp;K M Newell","doi":"10.1007/s004210050635","DOIUrl":null,"url":null,"abstract":"<p><p>The bilateral patterns of physiological tremor in the upper limb of adults were examined under conditions where eight combinations of the elbow, wrist and index-finger joints of the right arm were braced using individually molded splints. The hypotheses tested were that: (a) coordination of upper-limb tremor involves (compensatory) coupling of intra- but not inter-limb segments, (b) splinting the respective joints of the right arm changes the organization of this synergy in both limbs, and (c) reducing the involvement of joint-space degrees of freedom through restricting their motion (by splinting) results in increased tremor in the distal segments. Under no-splinting conditions, significant relationships were only observed between adjacent (intra-limb) effector units, with the strength of the correlation increasing from proximal to distal. Splinting the right limb resulted in an increase in the strength and number of significant intra-limb relationships in both limbs. No inter-limb tremor relationships were found between any segment during this task, irrespective of the splinting condition. The frequency profile for the tremor in each limb segment showed two prominent frequency peaks (at 2-4 Hz and 8-12 Hz). A third, higher frequency peak (18-22 Hz) was observed in the index fingers only. Splinting the right limb produced a general increase in the amplitude and variability of tremor in the fingertip of both arms. This effect was particularly strong under conditions where the more proximal joints were splinted. The lack of any between-limb relationships, coupled with the fact that splinting one limb influenced both limbs, suggests that some form of linkage does exist between the limbs. It is unlikely that mechanical linkages can explain fully these relationships. It is proposed that the tremor observed in either limb represents the output of a central oscillatory mechanism(s), but that this output is subsequently independently filtered in a parallel fashion on its way to each respective limb. A common bilateral (compensatory) strategy is employed to minimize the tremor in either limb during this multiple-degrees-of-freedom task.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050635","citationCount":"33","resultStr":"{\"title\":\"Bilateral organization of physiological tremor in the upper limb.\",\"authors\":\"S Morrison,&nbsp;K M Newell\",\"doi\":\"10.1007/s004210050635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bilateral patterns of physiological tremor in the upper limb of adults were examined under conditions where eight combinations of the elbow, wrist and index-finger joints of the right arm were braced using individually molded splints. The hypotheses tested were that: (a) coordination of upper-limb tremor involves (compensatory) coupling of intra- but not inter-limb segments, (b) splinting the respective joints of the right arm changes the organization of this synergy in both limbs, and (c) reducing the involvement of joint-space degrees of freedom through restricting their motion (by splinting) results in increased tremor in the distal segments. Under no-splinting conditions, significant relationships were only observed between adjacent (intra-limb) effector units, with the strength of the correlation increasing from proximal to distal. Splinting the right limb resulted in an increase in the strength and number of significant intra-limb relationships in both limbs. No inter-limb tremor relationships were found between any segment during this task, irrespective of the splinting condition. The frequency profile for the tremor in each limb segment showed two prominent frequency peaks (at 2-4 Hz and 8-12 Hz). A third, higher frequency peak (18-22 Hz) was observed in the index fingers only. Splinting the right limb produced a general increase in the amplitude and variability of tremor in the fingertip of both arms. This effect was particularly strong under conditions where the more proximal joints were splinted. The lack of any between-limb relationships, coupled with the fact that splinting one limb influenced both limbs, suggests that some form of linkage does exist between the limbs. It is unlikely that mechanical linkages can explain fully these relationships. It is proposed that the tremor observed in either limb represents the output of a central oscillatory mechanism(s), but that this output is subsequently independently filtered in a parallel fashion on its way to each respective limb. A common bilateral (compensatory) strategy is employed to minimize the tremor in either limb during this multiple-degrees-of-freedom task.</p>\",\"PeriodicalId\":11936,\"journal\":{\"name\":\"European Journal of Applied Physiology and Occupational Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004210050635\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology and Occupational Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004210050635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

成人上肢的双侧生理震颤模式是在使用单独成型的夹板支撑右臂肘关节、手腕关节和食指关节的八种组合的情况下进行的。测试的假设是:(a)上肢震颤的协调涉及(代偿性)肢段内而不是肢段间的耦合,(b)夹板固定右臂的各个关节改变了四肢中这种协同作用的组织,以及(c)通过限制关节空间自由度的运动(通过夹板)减少关节空间自由度的参与导致远端节段震颤增加。在没有夹板的情况下,仅在相邻(肢内)效应单元之间观察到显著的相关性,相关性的强度从近端到远端逐渐增加。用夹板固定右肢可以增加两肢的力量和显著的肢内关系的数量。在这项任务中,无论夹板条件如何,都没有发现任何部分之间的肢体间震颤关系。每个肢体震颤的频率分布显示两个显著的频率峰值(2-4 Hz和8-12 Hz)。第三个更高的频率峰值(18-22 Hz)仅在食指中观察到。用夹板固定右肢会使双臂指尖震颤的幅度和变异性普遍增加。这种效果在更近端的关节被夹板固定的情况下尤为明显。四肢之间没有任何联系,加上固定一个肢体会影响两个肢体,这表明四肢之间确实存在某种形式的联系。机械联系不太可能完全解释这些关系。有人提出,在任何一个分支中观察到的震颤代表了一个中心振荡机制的输出,但这个输出随后在其通往每个分支的路上以平行的方式独立过滤。在这个多自由度的任务中,一个共同的双侧(代偿)策略被用来最小化任何一个肢体的震颤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilateral organization of physiological tremor in the upper limb.

The bilateral patterns of physiological tremor in the upper limb of adults were examined under conditions where eight combinations of the elbow, wrist and index-finger joints of the right arm were braced using individually molded splints. The hypotheses tested were that: (a) coordination of upper-limb tremor involves (compensatory) coupling of intra- but not inter-limb segments, (b) splinting the respective joints of the right arm changes the organization of this synergy in both limbs, and (c) reducing the involvement of joint-space degrees of freedom through restricting their motion (by splinting) results in increased tremor in the distal segments. Under no-splinting conditions, significant relationships were only observed between adjacent (intra-limb) effector units, with the strength of the correlation increasing from proximal to distal. Splinting the right limb resulted in an increase in the strength and number of significant intra-limb relationships in both limbs. No inter-limb tremor relationships were found between any segment during this task, irrespective of the splinting condition. The frequency profile for the tremor in each limb segment showed two prominent frequency peaks (at 2-4 Hz and 8-12 Hz). A third, higher frequency peak (18-22 Hz) was observed in the index fingers only. Splinting the right limb produced a general increase in the amplitude and variability of tremor in the fingertip of both arms. This effect was particularly strong under conditions where the more proximal joints were splinted. The lack of any between-limb relationships, coupled with the fact that splinting one limb influenced both limbs, suggests that some form of linkage does exist between the limbs. It is unlikely that mechanical linkages can explain fully these relationships. It is proposed that the tremor observed in either limb represents the output of a central oscillatory mechanism(s), but that this output is subsequently independently filtered in a parallel fashion on its way to each respective limb. A common bilateral (compensatory) strategy is employed to minimize the tremor in either limb during this multiple-degrees-of-freedom task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees In vivo vibrational wave propagation in human tibiae at different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1