常压高氧条件下大鼠大脑皮层的氧运输。

K P Ivanov, I B Sokolova, E P Vovenko
{"title":"常压高氧条件下大鼠大脑皮层的氧运输。","authors":"K P Ivanov,&nbsp;I B Sokolova,&nbsp;E P Vovenko","doi":"10.1007/s004210050637","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of oxygen tension (PO(2)) in microvessels and in the tissues of the rat brain cortex on inhaling air (normoxia) and pure oxygen at atmospheric pressure (normobaric hyperoxia) was studied with the aid of oxygen microelectrodes (diameter = 3-6 microm), under visual control using a contact optic system. At normoxia, the PO(2) of arterial blood was shown to decrease from [mean (SE)] 84.1 (1.3) mmHg in the aorta to about 60.9 (3.3) mmHg in the smallest arterioles, due to the permeability of the arteriole walls to oxygen. At normobaric hyperoxia, the PO(2) of the arterial blood decreased from 345 (6) mmHg in the aorta to 154 (11) mmHg in the smallest arterioles. In the blood of the smallest venules at normoxia and at normobaric hyperoxia, the differences between PO(2) values were smoothed out. Considerable differences between PO(2) values at normoxia and at normobaric hyperoxia were found in tissues at a distance of 10-50 microm from the arteriole walls (diameter = 10-30 microm). At hyperbaric hyperoxia these values were greater than at normoxia, by 100-150 mmHg. In the long-run, thorough measurements of PO(2) in the blood of the brain microvessels and in the tissues near to the microvessels allowed the elucidation of quantitative changes in the process of oxygen transport from the blood to the tissues after changing over from the inhalation of air to inhaling oxygen. The physiological, and possibly pathological significance of these changes requires further analysis.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050637","citationCount":"27","resultStr":"{\"title\":\"Oxygen transport in the rat brain cortex at normobaric hyperoxia.\",\"authors\":\"K P Ivanov,&nbsp;I B Sokolova,&nbsp;E P Vovenko\",\"doi\":\"10.1007/s004210050637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distribution of oxygen tension (PO(2)) in microvessels and in the tissues of the rat brain cortex on inhaling air (normoxia) and pure oxygen at atmospheric pressure (normobaric hyperoxia) was studied with the aid of oxygen microelectrodes (diameter = 3-6 microm), under visual control using a contact optic system. At normoxia, the PO(2) of arterial blood was shown to decrease from [mean (SE)] 84.1 (1.3) mmHg in the aorta to about 60.9 (3.3) mmHg in the smallest arterioles, due to the permeability of the arteriole walls to oxygen. At normobaric hyperoxia, the PO(2) of the arterial blood decreased from 345 (6) mmHg in the aorta to 154 (11) mmHg in the smallest arterioles. In the blood of the smallest venules at normoxia and at normobaric hyperoxia, the differences between PO(2) values were smoothed out. Considerable differences between PO(2) values at normoxia and at normobaric hyperoxia were found in tissues at a distance of 10-50 microm from the arteriole walls (diameter = 10-30 microm). At hyperbaric hyperoxia these values were greater than at normoxia, by 100-150 mmHg. In the long-run, thorough measurements of PO(2) in the blood of the brain microvessels and in the tissues near to the microvessels allowed the elucidation of quantitative changes in the process of oxygen transport from the blood to the tissues after changing over from the inhalation of air to inhaling oxygen. The physiological, and possibly pathological significance of these changes requires further analysis.</p>\",\"PeriodicalId\":11936,\"journal\":{\"name\":\"European Journal of Applied Physiology and Occupational Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004210050637\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology and Occupational Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004210050637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在接触光学系统的视觉控制下,利用直径为3-6微米的氧气微电极,研究了大鼠吸入空气(常氧)和常压下的纯氧(常压高氧)时微血管和大脑皮层组织中的氧张力(PO(2))的分布。在常氧状态下,动脉血PO(2)从主动脉的[平均(SE)] 84.1 (1.3) mmHg下降到最小小动脉的约60.9 (3.3)mmHg,这是由于小动脉壁对氧气的渗透性。在常压高氧条件下,动脉血PO(2)从主动脉的345 (6)mmHg降至最小小动脉的154 (11)mmHg。在常氧和常压高氧条件下,最小小静脉血液中PO(2)值的差异被消除。在离小动脉壁(直径= 10-30微米)10-50微米处的组织中,常氧和常压高氧下的PO(2)值存在显著差异。在高压高氧条件下,这些数值比常氧条件下大100-150 mmHg。从长远来看,对脑微血管血液和微血管附近组织中PO(2)的彻底测量,可以阐明从吸入空气转为吸入氧气后,血液向组织输送氧气过程中的定量变化。这些变化的生理和可能的病理意义需要进一步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen transport in the rat brain cortex at normobaric hyperoxia.

The distribution of oxygen tension (PO(2)) in microvessels and in the tissues of the rat brain cortex on inhaling air (normoxia) and pure oxygen at atmospheric pressure (normobaric hyperoxia) was studied with the aid of oxygen microelectrodes (diameter = 3-6 microm), under visual control using a contact optic system. At normoxia, the PO(2) of arterial blood was shown to decrease from [mean (SE)] 84.1 (1.3) mmHg in the aorta to about 60.9 (3.3) mmHg in the smallest arterioles, due to the permeability of the arteriole walls to oxygen. At normobaric hyperoxia, the PO(2) of the arterial blood decreased from 345 (6) mmHg in the aorta to 154 (11) mmHg in the smallest arterioles. In the blood of the smallest venules at normoxia and at normobaric hyperoxia, the differences between PO(2) values were smoothed out. Considerable differences between PO(2) values at normoxia and at normobaric hyperoxia were found in tissues at a distance of 10-50 microm from the arteriole walls (diameter = 10-30 microm). At hyperbaric hyperoxia these values were greater than at normoxia, by 100-150 mmHg. In the long-run, thorough measurements of PO(2) in the blood of the brain microvessels and in the tissues near to the microvessels allowed the elucidation of quantitative changes in the process of oxygen transport from the blood to the tissues after changing over from the inhalation of air to inhaling oxygen. The physiological, and possibly pathological significance of these changes requires further analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees In vivo vibrational wave propagation in human tibiae at different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1