胰岛素(与葡萄糖相关或不相关)抑制大鼠肝脏葡萄糖生成的机制。

L Guignot, G Mithieux
{"title":"胰岛素(与葡萄糖相关或不相关)抑制大鼠肝脏葡萄糖生成的机制。","authors":"L Guignot,&nbsp;G Mithieux","doi":"10.1152/ajpendo.1999.277.6.E984","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the intrahepatic mechanisms by which insulin, associated or not with hyperglycemia, may inhibit hepatic glucose production (HGP) in the rat. After a hyperinsulinemic euglycemic clamp in postabsorptive (PA) anesthetized rats, the 70% inhibition of HGP could be explained by a dramatic decrease in the glucose 6-phosphate (G-6-P) concentration, whereas the glucose-6-phosphatase (G-6-Pase) and glucokinase (GK) activities were unchanged. Under hyperinsulinemic hyperglycemic condition, the GK flux was increased. The G-6-P concentration was not or only weakly decreased. The inhibition of HGP involved a significant 25% inhibition of the G-6-Pase activity. Under similar conditions in fasted rats, the GK flux was very low. The suppression of G-6-Pase and HGP did not occur, despite plasma insulin and glucose concentrations similar to those in PA rats. Therefore, 1) insulin suppresses HGP in euglycemia by solely decreasing the G-6-P concentration; 2) when combining both hyperinsulinemia and hyperglycemia, the suppression of HGP involves the inhibition of the G-6-Pase activity; and 3) a sustained glucose-phosphorylation flux might be a crucial determinant in the inhibition of G-6-Pase and of HGP.</p>","PeriodicalId":7590,"journal":{"name":"American Journal of Physiology","volume":"277 6","pages":"E984-9"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/ajpendo.1999.277.6.E984","citationCount":"57","resultStr":"{\"title\":\"Mechanisms by which insulin, associated or not with glucose, may inhibit hepatic glucose production in the rat.\",\"authors\":\"L Guignot,&nbsp;G Mithieux\",\"doi\":\"10.1152/ajpendo.1999.277.6.E984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the intrahepatic mechanisms by which insulin, associated or not with hyperglycemia, may inhibit hepatic glucose production (HGP) in the rat. After a hyperinsulinemic euglycemic clamp in postabsorptive (PA) anesthetized rats, the 70% inhibition of HGP could be explained by a dramatic decrease in the glucose 6-phosphate (G-6-P) concentration, whereas the glucose-6-phosphatase (G-6-Pase) and glucokinase (GK) activities were unchanged. Under hyperinsulinemic hyperglycemic condition, the GK flux was increased. The G-6-P concentration was not or only weakly decreased. The inhibition of HGP involved a significant 25% inhibition of the G-6-Pase activity. Under similar conditions in fasted rats, the GK flux was very low. The suppression of G-6-Pase and HGP did not occur, despite plasma insulin and glucose concentrations similar to those in PA rats. Therefore, 1) insulin suppresses HGP in euglycemia by solely decreasing the G-6-P concentration; 2) when combining both hyperinsulinemia and hyperglycemia, the suppression of HGP involves the inhibition of the G-6-Pase activity; and 3) a sustained glucose-phosphorylation flux might be a crucial determinant in the inhibition of G-6-Pase and of HGP.</p>\",\"PeriodicalId\":7590,\"journal\":{\"name\":\"American Journal of Physiology\",\"volume\":\"277 6\",\"pages\":\"E984-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/ajpendo.1999.277.6.E984\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.1999.277.6.E984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajpendo.1999.277.6.E984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

我们研究了胰岛素在肝内抑制大鼠肝脏葡萄糖生成(HGP)的机制,无论是否与高血糖有关。在吸收后(PA)麻醉大鼠高胰岛素正糖钳夹后,HGP抑制70%可能是由于葡萄糖-6-磷酸(G-6-P)浓度急剧下降,而葡萄糖-6-磷酸酶(G-6-Pase)和葡萄糖激酶(GK)活性不变。在高胰岛素型高血糖状态下,GK通量增加。G-6-P浓度没有或只有微弱下降。对HGP的抑制作用包括对G-6-Pase活性的25%的显著抑制。在类似的条件下,禁食大鼠的GK通量非常低。尽管血浆胰岛素和葡萄糖浓度与PA大鼠相似,但G-6-Pase和HGP并未受到抑制。因此,1)胰岛素仅通过降低G-6-P浓度来抑制高血糖期的HGP;2)当合并高胰岛素血症和高血糖时,抑制HGP涉及抑制G-6-Pase活性;3)持续的葡萄糖磷酸化通量可能是抑制G-6-Pase和HGP的关键决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms by which insulin, associated or not with glucose, may inhibit hepatic glucose production in the rat.

We investigated the intrahepatic mechanisms by which insulin, associated or not with hyperglycemia, may inhibit hepatic glucose production (HGP) in the rat. After a hyperinsulinemic euglycemic clamp in postabsorptive (PA) anesthetized rats, the 70% inhibition of HGP could be explained by a dramatic decrease in the glucose 6-phosphate (G-6-P) concentration, whereas the glucose-6-phosphatase (G-6-Pase) and glucokinase (GK) activities were unchanged. Under hyperinsulinemic hyperglycemic condition, the GK flux was increased. The G-6-P concentration was not or only weakly decreased. The inhibition of HGP involved a significant 25% inhibition of the G-6-Pase activity. Under similar conditions in fasted rats, the GK flux was very low. The suppression of G-6-Pase and HGP did not occur, despite plasma insulin and glucose concentrations similar to those in PA rats. Therefore, 1) insulin suppresses HGP in euglycemia by solely decreasing the G-6-P concentration; 2) when combining both hyperinsulinemia and hyperglycemia, the suppression of HGP involves the inhibition of the G-6-Pase activity; and 3) a sustained glucose-phosphorylation flux might be a crucial determinant in the inhibition of G-6-Pase and of HGP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
期刊最新文献
Case Report: Intraoperative Fascial Traction in Robotic Abdominal Wall Surgery; An Early Experience. Microvessel occlusions alter amyloid-beta plaque morphology in a mouse model of Alzheimer's disease. De virtuele diabeteskliniek in een stroomversnelling? An interventional image-guided microdevice implantation and retrieval method for in-vivo drug response assessment. Methods for Congenital Thumb Hypoplasia Reconstruction. A Review of the Outcomes for Ten Years of Surgical Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1