{"title":"猪肠道d -葡萄糖运输系统的异质性。","authors":"N Halaihel, D Gerbaud, M Vasseur, F Alvarado","doi":"10.1152/ajpcell.1999.277.6.C1130","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneity of intestinal D-glucose transport is demonstrated using pig jejunal brush-border membrane vesicles in the presence of 100/0 (out/in) mM gradients each of NaCl, NaSCN, and KSCN. Two D-glucose transport systems are kinetically distinguished: high-affinity, low-capacity system 1, which is equivalent to the symporter SGLT1; and low-affinity, high-capacity system 2, which is not a member of the SGLT family but is a D-glucose and D-mannose transporter exhibiting no preference for Na(+) over K(+). A nonsaturable D-glucose uptake component has also been detected; uptake of this component takes place at rates 10 times the rate of components characterizing the classical diffusion marker L-glucose. It is also shown that, in this kinetic work, 1) use of D-glucose-contaminated D-sorbitol as an osmotic replacement cannot cause the spurious appearance of nonexistent transport systems and 2) a large range (>/=50 mM) of substrate concentrations is required to correctly fit substrate saturation curves to distinguish between low-affinity transport systems and physical diffusion.</p>","PeriodicalId":7590,"journal":{"name":"American Journal of Physiology","volume":"277 6","pages":"C1130-41"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/ajpcell.1999.277.6.C1130","citationCount":"152","resultStr":"{\"title\":\"Heterogeneity of pig intestinal D-glucose transport systems.\",\"authors\":\"N Halaihel, D Gerbaud, M Vasseur, F Alvarado\",\"doi\":\"10.1152/ajpcell.1999.277.6.C1130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterogeneity of intestinal D-glucose transport is demonstrated using pig jejunal brush-border membrane vesicles in the presence of 100/0 (out/in) mM gradients each of NaCl, NaSCN, and KSCN. Two D-glucose transport systems are kinetically distinguished: high-affinity, low-capacity system 1, which is equivalent to the symporter SGLT1; and low-affinity, high-capacity system 2, which is not a member of the SGLT family but is a D-glucose and D-mannose transporter exhibiting no preference for Na(+) over K(+). A nonsaturable D-glucose uptake component has also been detected; uptake of this component takes place at rates 10 times the rate of components characterizing the classical diffusion marker L-glucose. It is also shown that, in this kinetic work, 1) use of D-glucose-contaminated D-sorbitol as an osmotic replacement cannot cause the spurious appearance of nonexistent transport systems and 2) a large range (>/=50 mM) of substrate concentrations is required to correctly fit substrate saturation curves to distinguish between low-affinity transport systems and physical diffusion.</p>\",\"PeriodicalId\":7590,\"journal\":{\"name\":\"American Journal of Physiology\",\"volume\":\"277 6\",\"pages\":\"C1130-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/ajpcell.1999.277.6.C1130\",\"citationCount\":\"152\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.1999.277.6.C1130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajpcell.1999.277.6.C1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterogeneity of pig intestinal D-glucose transport systems.
Heterogeneity of intestinal D-glucose transport is demonstrated using pig jejunal brush-border membrane vesicles in the presence of 100/0 (out/in) mM gradients each of NaCl, NaSCN, and KSCN. Two D-glucose transport systems are kinetically distinguished: high-affinity, low-capacity system 1, which is equivalent to the symporter SGLT1; and low-affinity, high-capacity system 2, which is not a member of the SGLT family but is a D-glucose and D-mannose transporter exhibiting no preference for Na(+) over K(+). A nonsaturable D-glucose uptake component has also been detected; uptake of this component takes place at rates 10 times the rate of components characterizing the classical diffusion marker L-glucose. It is also shown that, in this kinetic work, 1) use of D-glucose-contaminated D-sorbitol as an osmotic replacement cannot cause the spurious appearance of nonexistent transport systems and 2) a large range (>/=50 mM) of substrate concentrations is required to correctly fit substrate saturation curves to distinguish between low-affinity transport systems and physical diffusion.