{"title":"原肌球蛋白抑制肿瘤转化和调控细胞骨架。","authors":"V Shah, R Braverman, G L Prasad","doi":"10.1023/b:scam.0000007130.08611.fc","DOIUrl":null,"url":null,"abstract":"<p><p>Down regulation of Tropomyosins (TMs) is a consistent biochemical change observed in many transformed cells. Our previous work has demonstrated that Tropomyosin-1 is an antioncogene and it is a class II tumor suppressor. Using ras-transformed murine fibroblasts (DT cells), we have examined the effects of co-expression of two isoforms of TM on cell morphology, cytoskeleton and tumorigenecity. Enhanced expression of TM1, a suppressor of transformation, along with TM2 which is not a tumor suppressor results in the formation of well-organized microfilaments, a morphology that resembles normal fibroblasts, and suppression of tumorigenecity. Tumor formation in vivo was compatible with the persistence of high-level of TM2, but not TM1. Homodimers of TM1 and TM2 were observed in these cells. Thus, restoration of expression of TM1 and TM2 protein in ras-transformed cells suppresses the transformed phenotype with dramatic re-organization of microfilaments. These data show that TM2 cooperates with TM1 in the reorganization of microfilaments, while TM1 is a suppressor of the transformed phenotype.</p>","PeriodicalId":21884,"journal":{"name":"Somatic Cell and Molecular Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/b:scam.0000007130.08611.fc","citationCount":"30","resultStr":"{\"title\":\"Suppression of neoplastic transformation and regulation of cytoskeleton by tropomyosins.\",\"authors\":\"V Shah, R Braverman, G L Prasad\",\"doi\":\"10.1023/b:scam.0000007130.08611.fc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Down regulation of Tropomyosins (TMs) is a consistent biochemical change observed in many transformed cells. Our previous work has demonstrated that Tropomyosin-1 is an antioncogene and it is a class II tumor suppressor. Using ras-transformed murine fibroblasts (DT cells), we have examined the effects of co-expression of two isoforms of TM on cell morphology, cytoskeleton and tumorigenecity. Enhanced expression of TM1, a suppressor of transformation, along with TM2 which is not a tumor suppressor results in the formation of well-organized microfilaments, a morphology that resembles normal fibroblasts, and suppression of tumorigenecity. Tumor formation in vivo was compatible with the persistence of high-level of TM2, but not TM1. Homodimers of TM1 and TM2 were observed in these cells. Thus, restoration of expression of TM1 and TM2 protein in ras-transformed cells suppresses the transformed phenotype with dramatic re-organization of microfilaments. These data show that TM2 cooperates with TM1 in the reorganization of microfilaments, while TM1 is a suppressor of the transformed phenotype.</p>\",\"PeriodicalId\":21884,\"journal\":{\"name\":\"Somatic Cell and Molecular Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1023/b:scam.0000007130.08611.fc\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Somatic Cell and Molecular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1023/b:scam.0000007130.08611.fc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatic Cell and Molecular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/b:scam.0000007130.08611.fc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Suppression of neoplastic transformation and regulation of cytoskeleton by tropomyosins.
Down regulation of Tropomyosins (TMs) is a consistent biochemical change observed in many transformed cells. Our previous work has demonstrated that Tropomyosin-1 is an antioncogene and it is a class II tumor suppressor. Using ras-transformed murine fibroblasts (DT cells), we have examined the effects of co-expression of two isoforms of TM on cell morphology, cytoskeleton and tumorigenecity. Enhanced expression of TM1, a suppressor of transformation, along with TM2 which is not a tumor suppressor results in the formation of well-organized microfilaments, a morphology that resembles normal fibroblasts, and suppression of tumorigenecity. Tumor formation in vivo was compatible with the persistence of high-level of TM2, but not TM1. Homodimers of TM1 and TM2 were observed in these cells. Thus, restoration of expression of TM1 and TM2 protein in ras-transformed cells suppresses the transformed phenotype with dramatic re-organization of microfilaments. These data show that TM2 cooperates with TM1 in the reorganization of microfilaments, while TM1 is a suppressor of the transformed phenotype.