过度表达胸腺蛋白酶β 4的细胞对凋亡的抗性增加:局灶黏附激酶pp125FAK的作用。

M Niu, V T Nachmias
{"title":"过度表达胸腺蛋白酶β 4的细胞对凋亡的抗性增加:局灶黏附激酶pp125FAK的作用。","authors":"M Niu,&nbsp;V T Nachmias","doi":"10.3109/15419060009015002","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of adherence to substrate can, by itself, induce apoptosis (anoikis) in epithelial cells, but does not do so in fibroblasts. To test the idea that adherence transmits signals that inhibit apoptosis even in fibroblasts, we took advantage of the greatly increased adherence to the substratum observed in NIH3T3 cell lines that overexpress thymosin beta four. We treated overexpressing (OE) and vector control lines with either ultraviolet light (UV) or tumor necrosis factor alpha (TNF alpha). When the cells were on a substratum, the more adherent OE cells were 2-fold more resistant to apoptosis induced by either treatment than vector controls. In contrast, when the cells were treated with either agent while in suspension, the difference in resistance between OE cells and vector controls was lost. Thus the increased resistance to apoptosis was dependent on adherence. There was no difference in the content of bcl-2 in the OE cells vs the controls. A connection between pp125FAK and resistance to apoptosis has been previously shown in primary cultures of fibroblasts. The Tbeta4 overexpressing cells have approximately 1.4x more pp125FAK than the controls, and the kinase is approximately 2-fold more phosphorylated in adherent OE cells than in the vector controls. The phosphorylation of pp125FAK decreased strikingly when the cells were put into suspension. In addition, twice as much paxillin associated with pp125FAK in OE adherent cells as in vector controls, but this difference was also lost in suspended cells. Our results support the concept of an adherence dependent pp125FAK-paxillin signalling pathway in fibroblasts that inhibits damage-induced apoptosis.</p>","PeriodicalId":79325,"journal":{"name":"Cell adhesion and communication","volume":"7 4","pages":"311-20"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419060009015002","citationCount":"34","resultStr":"{\"title\":\"Increased resistance to apoptosis in cells overexpressing thymosin beta four: A role for focal adhesion kinase pp125FAK.\",\"authors\":\"M Niu,&nbsp;V T Nachmias\",\"doi\":\"10.3109/15419060009015002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss of adherence to substrate can, by itself, induce apoptosis (anoikis) in epithelial cells, but does not do so in fibroblasts. To test the idea that adherence transmits signals that inhibit apoptosis even in fibroblasts, we took advantage of the greatly increased adherence to the substratum observed in NIH3T3 cell lines that overexpress thymosin beta four. We treated overexpressing (OE) and vector control lines with either ultraviolet light (UV) or tumor necrosis factor alpha (TNF alpha). When the cells were on a substratum, the more adherent OE cells were 2-fold more resistant to apoptosis induced by either treatment than vector controls. In contrast, when the cells were treated with either agent while in suspension, the difference in resistance between OE cells and vector controls was lost. Thus the increased resistance to apoptosis was dependent on adherence. There was no difference in the content of bcl-2 in the OE cells vs the controls. A connection between pp125FAK and resistance to apoptosis has been previously shown in primary cultures of fibroblasts. The Tbeta4 overexpressing cells have approximately 1.4x more pp125FAK than the controls, and the kinase is approximately 2-fold more phosphorylated in adherent OE cells than in the vector controls. The phosphorylation of pp125FAK decreased strikingly when the cells were put into suspension. In addition, twice as much paxillin associated with pp125FAK in OE adherent cells as in vector controls, but this difference was also lost in suspended cells. Our results support the concept of an adherence dependent pp125FAK-paxillin signalling pathway in fibroblasts that inhibits damage-induced apoptosis.</p>\",\"PeriodicalId\":79325,\"journal\":{\"name\":\"Cell adhesion and communication\",\"volume\":\"7 4\",\"pages\":\"311-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419060009015002\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell adhesion and communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419060009015002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell adhesion and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419060009015002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

失去对底物的粘附性本身可以诱导上皮细胞凋亡,但在成纤维细胞中不会。为了验证即使在成纤维细胞中,粘附也能传递抑制细胞凋亡的信号,我们利用了在过度表达胸腺酶β 4的NIH3T3细胞系中观察到的对基质的粘附性大大增加的观点。我们用紫外线(UV)或肿瘤坏死因子α (TNF α)处理过表达(OE)和载体对照线。当细胞在基质上时,黏附程度越高的OE细胞对两种处理诱导的凋亡的抵抗力是载体对照的2倍。相比之下,当细胞在悬浮状态下用任何一种药物处理时,OE细胞和载体对照之间的抗性差异消失。因此,细胞凋亡抵抗的增强依赖于粘附。OE细胞中bcl-2含量与对照组无明显差异。pp125FAK与抗凋亡之间的联系先前已在成纤维细胞的原代培养中得到证实。Tbeta4过表达细胞的pp125FAK约为对照的1.4倍,贴壁OE细胞的激酶磷酸化程度约为载体对照的2倍。当细胞处于悬浮状态时,pp125FAK的磷酸化水平显著降低。此外,与载体对照相比,OE贴壁细胞中与pp125FAK相关的paxillin是载体对照的两倍,但悬浮细胞中也没有这种差异。我们的研究结果支持了成纤维细胞中粘附依赖pp125FAK-paxillin信号通路抑制损伤诱导的细胞凋亡的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increased resistance to apoptosis in cells overexpressing thymosin beta four: A role for focal adhesion kinase pp125FAK.

Loss of adherence to substrate can, by itself, induce apoptosis (anoikis) in epithelial cells, but does not do so in fibroblasts. To test the idea that adherence transmits signals that inhibit apoptosis even in fibroblasts, we took advantage of the greatly increased adherence to the substratum observed in NIH3T3 cell lines that overexpress thymosin beta four. We treated overexpressing (OE) and vector control lines with either ultraviolet light (UV) or tumor necrosis factor alpha (TNF alpha). When the cells were on a substratum, the more adherent OE cells were 2-fold more resistant to apoptosis induced by either treatment than vector controls. In contrast, when the cells were treated with either agent while in suspension, the difference in resistance between OE cells and vector controls was lost. Thus the increased resistance to apoptosis was dependent on adherence. There was no difference in the content of bcl-2 in the OE cells vs the controls. A connection between pp125FAK and resistance to apoptosis has been previously shown in primary cultures of fibroblasts. The Tbeta4 overexpressing cells have approximately 1.4x more pp125FAK than the controls, and the kinase is approximately 2-fold more phosphorylated in adherent OE cells than in the vector controls. The phosphorylation of pp125FAK decreased strikingly when the cells were put into suspension. In addition, twice as much paxillin associated with pp125FAK in OE adherent cells as in vector controls, but this difference was also lost in suspended cells. Our results support the concept of an adherence dependent pp125FAK-paxillin signalling pathway in fibroblasts that inhibits damage-induced apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expression of MacMARCKS restores cell adhesion to ICAM-1-coated surface. Quantitative determination of gap junction intercellular communication by scrape loading and image analysis. Expression of a soluble functional form of the integrin alpha4beta1 in mammalian cells. Tumor-derived mutated E-cadherin influences beta-catenin localization and increases susceptibility to actin cytoskeletal changes induced by pervanadate. Rac is essential in the transformation of endothelial cells by polyoma middle T.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1