生理时钟和高血压:基因和相互作用。

O C Ikonomov, A C Shisheva, A G Stoynev
{"title":"生理时钟和高血压:基因和相互作用。","authors":"O C Ikonomov,&nbsp;A C Shisheva,&nbsp;A G Stoynev","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in molecular genetics of circadian rhythms and hypertension led to the discovery of separate groups of genes implicated in their regulation. Importantly, the identification in both mammals and flies of 6 homologous circadian clock genes strongly indicates that the circadian period is controlled by an evolutionary conserved set of genes. Studies in familial and experimental hypertension reveal that elevated blood pressure is due to mutations in genes implicated in the function of the renin-angiotensin-aldosterone system. A chronobiologic approach to experimental hypertension indicates that hypertension can be associated with selectively inverted circadian rhythm of arterial pressure. Several lines of evidence suggest that the rostral hypothalamus is an area of central integration of the endogenous rhythmic and other regulatory influences that modulate the phase and amplitude of circadian arterial pressure rhythmicity. The combination of advanced molecular genetics and continuous blood pressure monitoring with chronobiologic assessment emerges as a fruitful approach in better understanding the pathogenesis of hypertension.</p>","PeriodicalId":7035,"journal":{"name":"Acta physiologica et pharmacologica Bulgarica","volume":"24 3","pages":"65-70"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian clocks and hypertension: genetics and interactions.\",\"authors\":\"O C Ikonomov,&nbsp;A C Shisheva,&nbsp;A G Stoynev\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in molecular genetics of circadian rhythms and hypertension led to the discovery of separate groups of genes implicated in their regulation. Importantly, the identification in both mammals and flies of 6 homologous circadian clock genes strongly indicates that the circadian period is controlled by an evolutionary conserved set of genes. Studies in familial and experimental hypertension reveal that elevated blood pressure is due to mutations in genes implicated in the function of the renin-angiotensin-aldosterone system. A chronobiologic approach to experimental hypertension indicates that hypertension can be associated with selectively inverted circadian rhythm of arterial pressure. Several lines of evidence suggest that the rostral hypothalamus is an area of central integration of the endogenous rhythmic and other regulatory influences that modulate the phase and amplitude of circadian arterial pressure rhythmicity. The combination of advanced molecular genetics and continuous blood pressure monitoring with chronobiologic assessment emerges as a fruitful approach in better understanding the pathogenesis of hypertension.</p>\",\"PeriodicalId\":7035,\"journal\":{\"name\":\"Acta physiologica et pharmacologica Bulgarica\",\"volume\":\"24 3\",\"pages\":\"65-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta physiologica et pharmacologica Bulgarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica et pharmacologica Bulgarica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近在昼夜节律和高血压分子遗传学方面的进展导致发现了与它们的调节有关的不同的基因组。重要的是,在哺乳动物和果蝇中发现的6个同源生物钟基因强烈表明,昼夜节律周期是由一组进化保守的基因控制的。家族性和实验性高血压研究表明,高血压升高是由于与肾素-血管紧张素-醛固酮系统功能相关的基因突变所致。实验高血压的时间生物学方法表明,高血压可能与动脉压的选择性倒转昼夜节律有关。一些证据表明,下丘脑吻侧是内源性节律和其他调节影响的中心整合区域,这些影响调节昼夜动脉压力节律性的相位和幅度。先进的分子遗传学和持续血压监测与时间生物学评估相结合,是更好地了解高血压发病机制的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Circadian clocks and hypertension: genetics and interactions.

Recent advances in molecular genetics of circadian rhythms and hypertension led to the discovery of separate groups of genes implicated in their regulation. Importantly, the identification in both mammals and flies of 6 homologous circadian clock genes strongly indicates that the circadian period is controlled by an evolutionary conserved set of genes. Studies in familial and experimental hypertension reveal that elevated blood pressure is due to mutations in genes implicated in the function of the renin-angiotensin-aldosterone system. A chronobiologic approach to experimental hypertension indicates that hypertension can be associated with selectively inverted circadian rhythm of arterial pressure. Several lines of evidence suggest that the rostral hypothalamus is an area of central integration of the endogenous rhythmic and other regulatory influences that modulate the phase and amplitude of circadian arterial pressure rhythmicity. The combination of advanced molecular genetics and continuous blood pressure monitoring with chronobiologic assessment emerges as a fruitful approach in better understanding the pathogenesis of hypertension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of the VIIIth Congress of the Bulgarian Society of Physiological Sciences. June 20-21, 2003. Adolescent erythrocytes: influence of high density lipoproteins-cholesterol (HDL-c) plasmatic levels on Na+/Li+ exchange kinetics. The effect of swimming exercise on lipid peroxidation in the rat brain, liver and heart. Modified treadmill protocol for evaluation of physical fitness in pediatric age group--comparison with Bruce and Balke protocols. Corrections of prooxidant-antioxidant homeostasis of organism under hypoxia of different genesis by yackton, a new pharmacological preparation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1