植物入侵——互惠共生的作用。

D M Richardson, N Allsopp, C M D'Antonio, S J Milton, M Rejmánek
{"title":"植物入侵——互惠共生的作用。","authors":"D M Richardson,&nbsp;N Allsopp,&nbsp;C M D'Antonio,&nbsp;S J Milton,&nbsp;M Rejmánek","doi":"10.1017/s0006323199005435","DOIUrl":null,"url":null,"abstract":"<p><p>Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animal-mediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conductive for the establishment of various alien/alien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat.</p>","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/s0006323199005435","citationCount":"0","resultStr":"{\"title\":\"Plant invasions--the role of mutualisms.\",\"authors\":\"D M Richardson,&nbsp;N Allsopp,&nbsp;C M D'Antonio,&nbsp;S J Milton,&nbsp;M Rejmánek\",\"doi\":\"10.1017/s0006323199005435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animal-mediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conductive for the establishment of various alien/alien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat.</p>\",\"PeriodicalId\":8893,\"journal\":{\"name\":\"Biological reviews of the Cambridge Philosophical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/s0006323199005435\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological reviews of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0006323199005435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological reviews of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0006323199005435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多引进的植物物种依靠它们在新栖息地的共生关系来克服建立和归化的障碍,在某些情况下,成为入侵物种。涉及动物介导的授粉和种子传播的互惠关系,以及植物根系和微生物群之间的共生关系往往有助于入侵。许多外来植物,特别是木本植物的传播依赖于传粉者的相互作用。大多数外来植物都有通才传粉媒介(昆虫和鸟类),传粉媒介的限制似乎不是引进植物传播的主要障碍(描述了榕树和兰花的特殊情况)。许多最臭名昭著的植物入侵者的种子是通过动物传播的,主要是鸟类和哺乳动物。我们的综述支持了紧密共同进化的植物-脊椎动物种子传播系统极为罕见的观点。脊椎动物分散的植物通常不受分散物缺乏的限制。大多数菌根植物与丛枝菌根真菌形成联系,由于它们的低特异性,似乎在促进或阻碍植物入侵方面不起主要作用(除了可能在像加拉帕戈斯群岛这样的偏远岛屿上,丛枝菌根真菌很少)。然而,缺乏共生体一直是许多外生菌根植物的主要障碍,特别是南半球部分地区的松树。豆科植物与根瘤菌之间、放线根植物与法兰克属植物之间的固氮联系在促进或阻碍入侵中的作用在入侵文献中几乎被忽视。在许多植物中,诱导固氮所需的共生体非常广泛,但有意引入共生体已经改变了许多(如果不是大多数)系统的不可侵入性。世界上一些最恶劣的外来入侵物种是在共生生物引入后才入侵的。新环境中的共生关系有时会使同一物种重新团结起来,在植物的原生范围内形成伙伴关系。然而,很多时候,不同的物种也参与其中,强调了许多(大多数)共生关系的弥散性。新生境中的共生关系通常复制该植物在自然范围内存在的功能或策略。偶尔,共生关系会形成全新的组合,对引进植物在新环境中的行为产生深远的影响(例如,澳大利亚的风散松树和凤头鹦鹉的种子传播共生关系;以及涉及植物根和真菌的菌根关联)。许多生态系统正变得更容易受到引进植物入侵的影响,因为:(a)它们包含越来越多的潜在互惠伙伴(例如,多面手食果动物和传粉者,宿主范围广泛的菌根真菌,具有跨属传染性的根瘤菌菌株);(b)有助于建立各种外国人/外国人协同作用的条件正在变得更加丰富。在筛选方案中纳入互惠关系的观点将提高(但不是完美的)我们预测特定植物物种是否会入侵特定栖息地的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant invasions--the role of mutualisms.

Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animal-mediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conductive for the establishment of various alien/alien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
99
期刊最新文献
Issue Information Issue Information The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction Biological Invasion Theories: Merging Perspectives from Population, Community and Ecosystem Scales Consistent trade‐offs in ecosystem services between land covers with different production intensities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1