{"title":"自然流产中的跳跃易位。","authors":"B Levy, T M Dunn, K Hirschhorn, N Kardon","doi":"10.1159/000015478","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosome translocations involving one donor chromosome and multiple recipient chromosomes have been referred to as jumping translocations (JTs). Acquired JTs are commonly observed in cancer patients, mainly involving chromosome 1. Constitutional forms of JTs mostly involve the acrocentric chromosomes and their satellites and have been reported in patients with clinical abnormalities. Recognizable phenotypes resulting from these events have included Down, Prader-Willi, and DiGeorge syndromes. The presence of JTs in spontaneous abortions has not been previously described. The breakpoints of all JTs occur in areas rich in repetitive DNA (telomeric, centromeric, and nucleolus organizing regions). We report two different unstable chromosome rearrangements in samples derived from spontaneous abortions. The first case involved a chromosome 15 donor. The recipient chromosomes were 1, 9, 15, and 21, and the respective breakpoints were in either the heterochromatic regions or the centromeres. FISH studies confirmed that the breakpoints of the jumping 15 rearrangement did not involve the Prader-Willi region but originated at the centromere or in the proximal short arm. A second case of instability was observed with a rearrangement resulting from a presumed de novo 8;21 translocation. Three JT cell lines were observed. They consisted of a deleted 8p chromosome, a dicentric 8;21 translocation, and an 8q isochromosome. The instability regions appeared to be at the pericentromeric region of chromosome 8 and the satellite region of chromosome 21. Both cases proved to be de novo events. The unstable nature of the JT resulting in chromosomal imbalance most likely contributed to the fetal loss. It appears that JT events may predispose to chromosomal imbalance via nondisjunction and chromosomal rearrangement and, therefore, may be an unrecognized cause of fetal loss.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015478","citationCount":"15","resultStr":"{\"title\":\"Jumping translocations in spontaneous abortions.\",\"authors\":\"B Levy, T M Dunn, K Hirschhorn, N Kardon\",\"doi\":\"10.1159/000015478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromosome translocations involving one donor chromosome and multiple recipient chromosomes have been referred to as jumping translocations (JTs). Acquired JTs are commonly observed in cancer patients, mainly involving chromosome 1. Constitutional forms of JTs mostly involve the acrocentric chromosomes and their satellites and have been reported in patients with clinical abnormalities. Recognizable phenotypes resulting from these events have included Down, Prader-Willi, and DiGeorge syndromes. The presence of JTs in spontaneous abortions has not been previously described. The breakpoints of all JTs occur in areas rich in repetitive DNA (telomeric, centromeric, and nucleolus organizing regions). We report two different unstable chromosome rearrangements in samples derived from spontaneous abortions. The first case involved a chromosome 15 donor. The recipient chromosomes were 1, 9, 15, and 21, and the respective breakpoints were in either the heterochromatic regions or the centromeres. FISH studies confirmed that the breakpoints of the jumping 15 rearrangement did not involve the Prader-Willi region but originated at the centromere or in the proximal short arm. A second case of instability was observed with a rearrangement resulting from a presumed de novo 8;21 translocation. Three JT cell lines were observed. They consisted of a deleted 8p chromosome, a dicentric 8;21 translocation, and an 8q isochromosome. The instability regions appeared to be at the pericentromeric region of chromosome 8 and the satellite region of chromosome 21. Both cases proved to be de novo events. The unstable nature of the JT resulting in chromosomal imbalance most likely contributed to the fetal loss. It appears that JT events may predispose to chromosomal imbalance via nondisjunction and chromosomal rearrangement and, therefore, may be an unrecognized cause of fetal loss.</p>\",\"PeriodicalId\":10982,\"journal\":{\"name\":\"Cytogenetics and cell genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000015478\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetics and cell genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000015478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetics and cell genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000015478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chromosome translocations involving one donor chromosome and multiple recipient chromosomes have been referred to as jumping translocations (JTs). Acquired JTs are commonly observed in cancer patients, mainly involving chromosome 1. Constitutional forms of JTs mostly involve the acrocentric chromosomes and their satellites and have been reported in patients with clinical abnormalities. Recognizable phenotypes resulting from these events have included Down, Prader-Willi, and DiGeorge syndromes. The presence of JTs in spontaneous abortions has not been previously described. The breakpoints of all JTs occur in areas rich in repetitive DNA (telomeric, centromeric, and nucleolus organizing regions). We report two different unstable chromosome rearrangements in samples derived from spontaneous abortions. The first case involved a chromosome 15 donor. The recipient chromosomes were 1, 9, 15, and 21, and the respective breakpoints were in either the heterochromatic regions or the centromeres. FISH studies confirmed that the breakpoints of the jumping 15 rearrangement did not involve the Prader-Willi region but originated at the centromere or in the proximal short arm. A second case of instability was observed with a rearrangement resulting from a presumed de novo 8;21 translocation. Three JT cell lines were observed. They consisted of a deleted 8p chromosome, a dicentric 8;21 translocation, and an 8q isochromosome. The instability regions appeared to be at the pericentromeric region of chromosome 8 and the satellite region of chromosome 21. Both cases proved to be de novo events. The unstable nature of the JT resulting in chromosomal imbalance most likely contributed to the fetal loss. It appears that JT events may predispose to chromosomal imbalance via nondisjunction and chromosomal rearrangement and, therefore, may be an unrecognized cause of fetal loss.