组合聚类分析核糖体RNA序列。

P Xing, C Kulikowski, I Muchnik, I Dubchak, D M Wolf, S Spengler, M Zorn
{"title":"组合聚类分析核糖体RNA序列。","authors":"P Xing,&nbsp;C Kulikowski,&nbsp;I Muchnik,&nbsp;I Dubchak,&nbsp;D M Wolf,&nbsp;S Spengler,&nbsp;M Zorn","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present an analysis of multi-aligned eukaryotic and procaryotic small subunit rRNA sequences using a novel segmentation and clustering procedure capable of extracting subsets of sequences that share common sequence features. This procedure consists of: i) segmentation of aligned sequences using a dynamic programming procedure, and subsequent identification of likely conserved segments; ii) for each putative conserved segment, extraction of a locall homogeneous cluster using a novel polynomial procedure; and iii) intersection of clusters associated with each conserved segment. Aside from their utilit in processing large gap-filled multi-alignments, these algorithms can be applied to a broad spectrum of rRNA analysis functions such as subalignment, phylogenetic subtree extraction and construction, and organism tree-placement, and can serve as a framework to organize sequence data in an efficient and easily searchable manner. The sequence classification we obtained using the method presented here shows a remarkable consistency with the independently constructed eukaryotic phylogenetic tree.</p>","PeriodicalId":79420,"journal":{"name":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of ribosomal RNA sequences by combinatorial clustering.\",\"authors\":\"P Xing,&nbsp;C Kulikowski,&nbsp;I Muchnik,&nbsp;I Dubchak,&nbsp;D M Wolf,&nbsp;S Spengler,&nbsp;M Zorn\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an analysis of multi-aligned eukaryotic and procaryotic small subunit rRNA sequences using a novel segmentation and clustering procedure capable of extracting subsets of sequences that share common sequence features. This procedure consists of: i) segmentation of aligned sequences using a dynamic programming procedure, and subsequent identification of likely conserved segments; ii) for each putative conserved segment, extraction of a locall homogeneous cluster using a novel polynomial procedure; and iii) intersection of clusters associated with each conserved segment. Aside from their utilit in processing large gap-filled multi-alignments, these algorithms can be applied to a broad spectrum of rRNA analysis functions such as subalignment, phylogenetic subtree extraction and construction, and organism tree-placement, and can serve as a framework to organize sequence data in an efficient and easily searchable manner. The sequence classification we obtained using the method presented here shows a remarkable consistency with the independently constructed eukaryotic phylogenetic tree.</p>\",\"PeriodicalId\":79420,\"journal\":{\"name\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了多对齐真核和原核小亚基rRNA序列的分析,使用一种新的分割和聚类程序能够提取序列的子集,共享共同的序列特征。该过程包括:i)使用动态规划程序对对齐序列进行分割,随后识别可能的保守片段;Ii)对于每个假定的保守段,使用新的多项式过程提取局部齐次聚类;iii)与每个保守段相关联的聚类的交集。这些算法除了可以用于处理大间隙填充的多比对外,还可以应用于广泛的rRNA分析功能,如亚比对、系统发育子树的提取和构建以及生物树的放置,并且可以作为一个框架,以高效和易于搜索的方式组织序列数据。利用本文提出的方法获得的序列分类与独立构建的真核生物系统发育树具有显著的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of ribosomal RNA sequences by combinatorial clustering.

We present an analysis of multi-aligned eukaryotic and procaryotic small subunit rRNA sequences using a novel segmentation and clustering procedure capable of extracting subsets of sequences that share common sequence features. This procedure consists of: i) segmentation of aligned sequences using a dynamic programming procedure, and subsequent identification of likely conserved segments; ii) for each putative conserved segment, extraction of a locall homogeneous cluster using a novel polynomial procedure; and iii) intersection of clusters associated with each conserved segment. Aside from their utilit in processing large gap-filled multi-alignments, these algorithms can be applied to a broad spectrum of rRNA analysis functions such as subalignment, phylogenetic subtree extraction and construction, and organism tree-placement, and can serve as a framework to organize sequence data in an efficient and easily searchable manner. The sequence classification we obtained using the method presented here shows a remarkable consistency with the independently constructed eukaryotic phylogenetic tree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Mass Degeneracy in SAR by MS by Stable Isotopic Labeling Intelligent aids for parallel experiment planning and macromolecular crystallization. A practical algorithm for optimal inference of haplotypes from diploid populations. Analysis of yeast's ORF upstream regions by parallel processing, microarrays, and computational methods. Finding regulatory elements using joint likelihoods for sequence and expression profile data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1