{"title":"雄激素、孕酮及其拮抗剂对体外成熟牛卵母细胞发育能力的影响。","authors":"C C Silva, P G Knight","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the present study was to determine whether androgens and progesterone influence the in vitro maturation of bovine oocytes as assessed by cleavage rates and competence to form blastocysts after in vitro fertilization. Bovine cumulus-oocyte complexes were cultured (n = 20 per drop) for 22-24 h at 38.5 degrees C in TCM-199 medium supplemented with 10% oestrous cow serum, eCG (2.5 iu ml(-1)) and a range of treatments that included aromatizable (testosterone; 100 nmol l(-1)) and non-aromatizable (dihydrotestosterone; 100 nmol l(-1)) androgens, an androgen antagonist (flutamide; 36 micromol l(-1)), progesterone (300 nmol l(-1)) and a progesterone antagonist (mifeprisone, RU486; 100 nmol l(-1)). Production of inhibin A, total alpha-subunit, activin A and follistatin by each group of cumulus-oocyte complexes was also measured, since inhibin-related peptides have been implicated as modulators of oocyte maturation and their production may be influenced by steroids and anti-steroids. Both testosterone and dihydrotestosterone increased oocyte cleavage rate (25%; P < 0.01) and dihydrotestosterone also increased (24%; P < 0.05) the proportion of oocytes that reached the >/= eight-cell stage. However, neither androgen affected blastocyst yield, or the proportion of blastocysts that hatched. The stimulatory effect of dihydrotestosterone on cleavage rate was reduced by flutamide but the anti-androgen had no effect when tested alone. Treatment with testosterone, but not dihydrotestosterone, decreased (P < 0.05) endogenous follistatin and increased (P < 0.05) the activin A:follistatin ratio in maturation medium. Concentrations of inhibin A, total alpha-subunit and activin A were not affected significantly by androgen or flutamide. Addition of progesterone or the anti-progestin mifepristone to cumulus-oocyte complexes had no effect on cleavage rate. However, progesterone reduced by approximately 40% (P < 0.05) the proportions of both total oocytes and cleaved oocytes that formed blastocysts. This effect was partially reversed by mifepristone. Neither progesterone nor mifepristone affected inhibin A, activin A or follistatin production. However, total alpha-subunit concentration was significantly greater in the progesterone-treated group than in the controls (50%; P < 0.05), indicating that the negative effect of progesterone on blastocyst yield may be mediated by increased inhibin alpha-subunit expression by cumulus cells.</p>","PeriodicalId":16957,"journal":{"name":"Journal of reproduction and fertility","volume":"119 2","pages":"261-9"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of androgens, progesterone and their antagonists on the developmental competence of in vitro matured bovine oocytes.\",\"authors\":\"C C Silva, P G Knight\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the present study was to determine whether androgens and progesterone influence the in vitro maturation of bovine oocytes as assessed by cleavage rates and competence to form blastocysts after in vitro fertilization. Bovine cumulus-oocyte complexes were cultured (n = 20 per drop) for 22-24 h at 38.5 degrees C in TCM-199 medium supplemented with 10% oestrous cow serum, eCG (2.5 iu ml(-1)) and a range of treatments that included aromatizable (testosterone; 100 nmol l(-1)) and non-aromatizable (dihydrotestosterone; 100 nmol l(-1)) androgens, an androgen antagonist (flutamide; 36 micromol l(-1)), progesterone (300 nmol l(-1)) and a progesterone antagonist (mifeprisone, RU486; 100 nmol l(-1)). Production of inhibin A, total alpha-subunit, activin A and follistatin by each group of cumulus-oocyte complexes was also measured, since inhibin-related peptides have been implicated as modulators of oocyte maturation and their production may be influenced by steroids and anti-steroids. Both testosterone and dihydrotestosterone increased oocyte cleavage rate (25%; P < 0.01) and dihydrotestosterone also increased (24%; P < 0.05) the proportion of oocytes that reached the >/= eight-cell stage. However, neither androgen affected blastocyst yield, or the proportion of blastocysts that hatched. The stimulatory effect of dihydrotestosterone on cleavage rate was reduced by flutamide but the anti-androgen had no effect when tested alone. Treatment with testosterone, but not dihydrotestosterone, decreased (P < 0.05) endogenous follistatin and increased (P < 0.05) the activin A:follistatin ratio in maturation medium. Concentrations of inhibin A, total alpha-subunit and activin A were not affected significantly by androgen or flutamide. Addition of progesterone or the anti-progestin mifepristone to cumulus-oocyte complexes had no effect on cleavage rate. However, progesterone reduced by approximately 40% (P < 0.05) the proportions of both total oocytes and cleaved oocytes that formed blastocysts. This effect was partially reversed by mifepristone. Neither progesterone nor mifepristone affected inhibin A, activin A or follistatin production. However, total alpha-subunit concentration was significantly greater in the progesterone-treated group than in the controls (50%; P < 0.05), indicating that the negative effect of progesterone on blastocyst yield may be mediated by increased inhibin alpha-subunit expression by cumulus cells.</p>\",\"PeriodicalId\":16957,\"journal\":{\"name\":\"Journal of reproduction and fertility\",\"volume\":\"119 2\",\"pages\":\"261-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of reproduction and fertility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of reproduction and fertility","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of androgens, progesterone and their antagonists on the developmental competence of in vitro matured bovine oocytes.
The aim of the present study was to determine whether androgens and progesterone influence the in vitro maturation of bovine oocytes as assessed by cleavage rates and competence to form blastocysts after in vitro fertilization. Bovine cumulus-oocyte complexes were cultured (n = 20 per drop) for 22-24 h at 38.5 degrees C in TCM-199 medium supplemented with 10% oestrous cow serum, eCG (2.5 iu ml(-1)) and a range of treatments that included aromatizable (testosterone; 100 nmol l(-1)) and non-aromatizable (dihydrotestosterone; 100 nmol l(-1)) androgens, an androgen antagonist (flutamide; 36 micromol l(-1)), progesterone (300 nmol l(-1)) and a progesterone antagonist (mifeprisone, RU486; 100 nmol l(-1)). Production of inhibin A, total alpha-subunit, activin A and follistatin by each group of cumulus-oocyte complexes was also measured, since inhibin-related peptides have been implicated as modulators of oocyte maturation and their production may be influenced by steroids and anti-steroids. Both testosterone and dihydrotestosterone increased oocyte cleavage rate (25%; P < 0.01) and dihydrotestosterone also increased (24%; P < 0.05) the proportion of oocytes that reached the >/= eight-cell stage. However, neither androgen affected blastocyst yield, or the proportion of blastocysts that hatched. The stimulatory effect of dihydrotestosterone on cleavage rate was reduced by flutamide but the anti-androgen had no effect when tested alone. Treatment with testosterone, but not dihydrotestosterone, decreased (P < 0.05) endogenous follistatin and increased (P < 0.05) the activin A:follistatin ratio in maturation medium. Concentrations of inhibin A, total alpha-subunit and activin A were not affected significantly by androgen or flutamide. Addition of progesterone or the anti-progestin mifepristone to cumulus-oocyte complexes had no effect on cleavage rate. However, progesterone reduced by approximately 40% (P < 0.05) the proportions of both total oocytes and cleaved oocytes that formed blastocysts. This effect was partially reversed by mifepristone. Neither progesterone nor mifepristone affected inhibin A, activin A or follistatin production. However, total alpha-subunit concentration was significantly greater in the progesterone-treated group than in the controls (50%; P < 0.05), indicating that the negative effect of progesterone on blastocyst yield may be mediated by increased inhibin alpha-subunit expression by cumulus cells.