线粒体疾病中的核基因缺陷。

M Zeviani, P Corona, L Nijtmans, V Tiranti
{"title":"线粒体疾病中的核基因缺陷。","authors":"M Zeviani,&nbsp;P Corona,&nbsp;L Nijtmans,&nbsp;V Tiranti","doi":"10.1007/s100720050059","DOIUrl":null,"url":null,"abstract":"<p><p>An increasing number of nuclear genes have been associated with abnormalities of oxidative phosphorylation and mitochondrial disorders. The protein products of these genes can be grouped into three categories: structural components of the respiratory chain, factors influencing the structural integrity or the copy number of mitochondrial DNA, and proteins which control the formation, assembly and turnover of the respiratory complexes. Loss-of-function mutations in SURF-1, a gene belonging to the third category, have been associated with Leigh syndrome with cytochrome c oxidase deficiency. Mature Surf-1 protein (Surf-1p) is a 30 kDa hydrophobic polypeptide whose function is still unknown. Using antibodies against human Surf-1p, we demonstrated that this protein is imported into mitochondria as a larger precursor. The same analysis revealed that no protein is present in cell lines harboring loss-of-function mutations of SURF-1, regardless of their type and position. We also generated several constructs with truncated or partially deleted SURF-1 cDNAs. None of these constructs, expressed into SURF-1 null mutant cells, were able to rescue the COX phenotype, suggesting that different regions of the protein are all essential for function. Finally, experiments based on 2D gel electrophoresis indicated that assembly of COX in SURF-1 null mutants is blocked at an early step, most likely before the incorporation of subunit II in the nascent intermediates composed of subunit I alone or subunit I plus subunit IV.</p>","PeriodicalId":73522,"journal":{"name":"Italian journal of neurological sciences","volume":"20 6","pages":"401-8"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s100720050059","citationCount":"28","resultStr":"{\"title\":\"Nuclear gene defects in mitochondrial disorders.\",\"authors\":\"M Zeviani,&nbsp;P Corona,&nbsp;L Nijtmans,&nbsp;V Tiranti\",\"doi\":\"10.1007/s100720050059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An increasing number of nuclear genes have been associated with abnormalities of oxidative phosphorylation and mitochondrial disorders. The protein products of these genes can be grouped into three categories: structural components of the respiratory chain, factors influencing the structural integrity or the copy number of mitochondrial DNA, and proteins which control the formation, assembly and turnover of the respiratory complexes. Loss-of-function mutations in SURF-1, a gene belonging to the third category, have been associated with Leigh syndrome with cytochrome c oxidase deficiency. Mature Surf-1 protein (Surf-1p) is a 30 kDa hydrophobic polypeptide whose function is still unknown. Using antibodies against human Surf-1p, we demonstrated that this protein is imported into mitochondria as a larger precursor. The same analysis revealed that no protein is present in cell lines harboring loss-of-function mutations of SURF-1, regardless of their type and position. We also generated several constructs with truncated or partially deleted SURF-1 cDNAs. None of these constructs, expressed into SURF-1 null mutant cells, were able to rescue the COX phenotype, suggesting that different regions of the protein are all essential for function. Finally, experiments based on 2D gel electrophoresis indicated that assembly of COX in SURF-1 null mutants is blocked at an early step, most likely before the incorporation of subunit II in the nascent intermediates composed of subunit I alone or subunit I plus subunit IV.</p>\",\"PeriodicalId\":73522,\"journal\":{\"name\":\"Italian journal of neurological sciences\",\"volume\":\"20 6\",\"pages\":\"401-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s100720050059\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian journal of neurological sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s100720050059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian journal of neurological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s100720050059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

越来越多的核基因与氧化磷酸化异常和线粒体疾病有关。这些基因的蛋白质产物可分为三类:呼吸链的结构成分,影响线粒体DNA结构完整性或拷贝数的因素,以及控制呼吸复合物形成、组装和周转的蛋白质。第三类基因SURF-1的功能丧失突变与Leigh综合征伴细胞色素c氧化酶缺乏症有关。成熟的Surf-1蛋白(Surf-1p)是一个30 kDa的疏水性多肽,其功能尚不清楚。使用针对人类Surf-1p的抗体,我们证明了这种蛋白质作为一个更大的前体被输入线粒体。同样的分析显示,在含有SURF-1功能丧失突变的细胞系中,无论其类型和位置如何,都不存在蛋白质。我们还用截断或部分删除的SURF-1 cdna生成了几个构建体。在SURF-1零突变细胞中表达的这些构建体都不能挽救COX表型,这表明该蛋白的不同区域对功能都是必需的。最后,基于2D凝胶电泳的实验表明,在SURF-1零突变体中,COX的组装在早期阶段就被阻断了,很可能是在亚基I单独或亚基I加亚基IV组成的新生中间体中加入亚基II之前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear gene defects in mitochondrial disorders.

An increasing number of nuclear genes have been associated with abnormalities of oxidative phosphorylation and mitochondrial disorders. The protein products of these genes can be grouped into three categories: structural components of the respiratory chain, factors influencing the structural integrity or the copy number of mitochondrial DNA, and proteins which control the formation, assembly and turnover of the respiratory complexes. Loss-of-function mutations in SURF-1, a gene belonging to the third category, have been associated with Leigh syndrome with cytochrome c oxidase deficiency. Mature Surf-1 protein (Surf-1p) is a 30 kDa hydrophobic polypeptide whose function is still unknown. Using antibodies against human Surf-1p, we demonstrated that this protein is imported into mitochondria as a larger precursor. The same analysis revealed that no protein is present in cell lines harboring loss-of-function mutations of SURF-1, regardless of their type and position. We also generated several constructs with truncated or partially deleted SURF-1 cDNAs. None of these constructs, expressed into SURF-1 null mutant cells, were able to rescue the COX phenotype, suggesting that different regions of the protein are all essential for function. Finally, experiments based on 2D gel electrophoresis indicated that assembly of COX in SURF-1 null mutants is blocked at an early step, most likely before the incorporation of subunit II in the nascent intermediates composed of subunit I alone or subunit I plus subunit IV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Playing with the sarcoplasmic reticulum with Giovanni. Functional roles of dystrophin and of associated proteins. New insights for the sarcoglycans. Myopathies, cardiomyopathies, and heart transplantation: a tribute to Giovanni Salviati. Exercise intolerance and the mitochondrial respiratory chain. Mitochondria in muscle cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1