基于概率分割模型的调控元素检测。

H J Bussemaker, H Li, E D Siggia
{"title":"基于概率分割模型的调控元素检测。","authors":"H J Bussemaker,&nbsp;H Li,&nbsp;E D Siggia","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of genome-wide mRNA expression data for organisms whose genome is fully sequenced provides a unique data set from which to decipher how transcription is regulated by the upstream control region of a gene. A new algorithm is presented which decomposes DNA sequence into the most probable \"dictionary\" of motifs or words. Identification of words is based on a probabilistic segmentation model in which the significance of longer words is deduced from the frequency of shorter words of various length. This eliminates the need for a separate set of reference data to define probabilities, and genome-wide applications are therefore possible. For the 6,000 upstream regulatory regions in the yeast genome, the 500 strongest motifs from a dictionary of size 1,200 match at a significance level of 15 standard deviations to a database of cis-regulatory elements. Analysis of sets of genes such as those up-regulated during sporulation reveals many new putative regulatory sites in addition to identifying previously known sites.</p>","PeriodicalId":79420,"journal":{"name":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulatory element detection using a probabilistic segmentation model.\",\"authors\":\"H J Bussemaker,&nbsp;H Li,&nbsp;E D Siggia\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability of genome-wide mRNA expression data for organisms whose genome is fully sequenced provides a unique data set from which to decipher how transcription is regulated by the upstream control region of a gene. A new algorithm is presented which decomposes DNA sequence into the most probable \\\"dictionary\\\" of motifs or words. Identification of words is based on a probabilistic segmentation model in which the significance of longer words is deduced from the frequency of shorter words of various length. This eliminates the need for a separate set of reference data to define probabilities, and genome-wide applications are therefore possible. For the 6,000 upstream regulatory regions in the yeast genome, the 500 strongest motifs from a dictionary of size 1,200 match at a significance level of 15 standard deviations to a database of cis-regulatory elements. Analysis of sets of genes such as those up-regulated during sporulation reveals many new putative regulatory sites in addition to identifying previously known sites.</p>\",\"PeriodicalId\":79420,\"journal\":{\"name\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于基因组完全测序的生物体,全基因组mRNA表达数据的可用性提供了一个独特的数据集,从中可以破译转录是如何由基因的上游控制区调节的。提出了一种将DNA序列分解成最可能的基序或词“字典”的新算法。词的识别是基于一个概率分割模型,在这个模型中,长词的重要性是由不同长度的短词的频率推断出来的。这消除了对一组单独的参考数据来定义概率的需要,因此全基因组应用是可能的。在酵母基因组的6000个上游调控区域中,从1200个字典中筛选出的500个最强的基序与顺式调控元件数据库的显著性水平为15个标准差。对一系列基因的分析,例如在产孢过程中上调的基因,除了确定先前已知的位点外,还揭示了许多新的假定的调控位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulatory element detection using a probabilistic segmentation model.

The availability of genome-wide mRNA expression data for organisms whose genome is fully sequenced provides a unique data set from which to decipher how transcription is regulated by the upstream control region of a gene. A new algorithm is presented which decomposes DNA sequence into the most probable "dictionary" of motifs or words. Identification of words is based on a probabilistic segmentation model in which the significance of longer words is deduced from the frequency of shorter words of various length. This eliminates the need for a separate set of reference data to define probabilities, and genome-wide applications are therefore possible. For the 6,000 upstream regulatory regions in the yeast genome, the 500 strongest motifs from a dictionary of size 1,200 match at a significance level of 15 standard deviations to a database of cis-regulatory elements. Analysis of sets of genes such as those up-regulated during sporulation reveals many new putative regulatory sites in addition to identifying previously known sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Mass Degeneracy in SAR by MS by Stable Isotopic Labeling Intelligent aids for parallel experiment planning and macromolecular crystallization. A practical algorithm for optimal inference of haplotypes from diploid populations. Analysis of yeast's ORF upstream regions by parallel processing, microarrays, and computational methods. Finding regulatory elements using joint likelihoods for sequence and expression profile data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1