序列数据库搜索使用跳跃对齐。

R Spang, M Rehmsmeier, J Stoye
{"title":"序列数据库搜索使用跳跃对齐。","authors":"R Spang,&nbsp;M Rehmsmeier,&nbsp;J Stoye","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a new algorithm for amino acid sequence classification and the detection of remote homologues. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well balanced manner. This is in contrast to established methods like profiles and hidden Markov models which focus on vertical information as they model the columns of the alignment independently. In our setting, we want to select from a given database of \"candidate sequences\" those proteins that belong to a given superfamily. In order to do so, each candidate sequence is separately tested against a multiple alignment of the known members of the superfamily by means of a new jumping alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and computes a local alignment of a single sequence and a multiple alignment. In contrast to traditional methods, however, this alignment is not based on a summary of the individual columns of the multiple alignment. Rather, the candidate sequence at each position is aligned to one sequence of the multiple alignment, called the \"reference sequence\". In addition, the reference sequence may change within the alignment, while each such jump is penalized. To evaluate the discriminative quality of the jumping alignment algorithm, we compared it to hidden Markov models on a subset of the SCOP database of protein domains. The discriminative quality was assessed by counting the number of false positives that ranked higher than the first true positive (FP-count). For moderate FP-counts above five, the number of successful searches with our method was considerably higher than with hidden Markov models.</p>","PeriodicalId":79420,"journal":{"name":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence database search using jumping alignments.\",\"authors\":\"R Spang,&nbsp;M Rehmsmeier,&nbsp;J Stoye\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe a new algorithm for amino acid sequence classification and the detection of remote homologues. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well balanced manner. This is in contrast to established methods like profiles and hidden Markov models which focus on vertical information as they model the columns of the alignment independently. In our setting, we want to select from a given database of \\\"candidate sequences\\\" those proteins that belong to a given superfamily. In order to do so, each candidate sequence is separately tested against a multiple alignment of the known members of the superfamily by means of a new jumping alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and computes a local alignment of a single sequence and a multiple alignment. In contrast to traditional methods, however, this alignment is not based on a summary of the individual columns of the multiple alignment. Rather, the candidate sequence at each position is aligned to one sequence of the multiple alignment, called the \\\"reference sequence\\\". In addition, the reference sequence may change within the alignment, while each such jump is penalized. To evaluate the discriminative quality of the jumping alignment algorithm, we compared it to hidden Markov models on a subset of the SCOP database of protein domains. The discriminative quality was assessed by counting the number of false positives that ranked higher than the first true positive (FP-count). For moderate FP-counts above five, the number of successful searches with our method was considerably higher than with hidden Markov models.</p>\",\"PeriodicalId\":79420,\"journal\":{\"name\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种新的氨基酸序列分类和远程同源物检测算法。其基本原理是以一种平衡的方式利用多重对齐的垂直和水平信息。这与profile和隐马尔可夫模型等已建立的方法形成对比,这些方法专注于垂直信息,因为它们独立地对对齐的列进行建模。在我们的设置中,我们希望从给定的“候选序列”数据库中选择属于给定超家族的那些蛋白质。为了做到这一点,每个候选序列通过新的跳跃对齐算法分别针对超家族已知成员的多重对齐进行测试。该算法是Smith-Waterman算法的扩展,计算单个序列的局部对齐和多个对齐。然而,与传统方法相比,这种对齐不是基于多重对齐的单个列的汇总。相反,每个位置的候选序列与多个序列中的一个序列对齐,称为“参考序列”。此外,参考序列可能在对齐中发生变化,而每次这样的跳转都会受到惩罚。为了评估跳跃比对算法的判别质量,我们将其与SCOP蛋白质结构域数据库子集上的隐马尔可夫模型进行了比较。通过计算假阳性高于第一个真阳性的数量(FP-count)来评估鉴别质量。对于大于5的中等fp计数,使用我们的方法成功搜索的次数明显高于使用隐马尔可夫模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequence database search using jumping alignments.

We describe a new algorithm for amino acid sequence classification and the detection of remote homologues. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well balanced manner. This is in contrast to established methods like profiles and hidden Markov models which focus on vertical information as they model the columns of the alignment independently. In our setting, we want to select from a given database of "candidate sequences" those proteins that belong to a given superfamily. In order to do so, each candidate sequence is separately tested against a multiple alignment of the known members of the superfamily by means of a new jumping alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and computes a local alignment of a single sequence and a multiple alignment. In contrast to traditional methods, however, this alignment is not based on a summary of the individual columns of the multiple alignment. Rather, the candidate sequence at each position is aligned to one sequence of the multiple alignment, called the "reference sequence". In addition, the reference sequence may change within the alignment, while each such jump is penalized. To evaluate the discriminative quality of the jumping alignment algorithm, we compared it to hidden Markov models on a subset of the SCOP database of protein domains. The discriminative quality was assessed by counting the number of false positives that ranked higher than the first true positive (FP-count). For moderate FP-counts above five, the number of successful searches with our method was considerably higher than with hidden Markov models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Mass Degeneracy in SAR by MS by Stable Isotopic Labeling Intelligent aids for parallel experiment planning and macromolecular crystallization. A practical algorithm for optimal inference of haplotypes from diploid populations. Analysis of yeast's ORF upstream regions by parallel processing, microarrays, and computational methods. Finding regulatory elements using joint likelihoods for sequence and expression profile data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1