一种利用酶层次结构进行代谢途径分析的多重比对算法。

Y Tohsato, H Matsuda, A Hashimoto
{"title":"一种利用酶层次结构进行代谢途径分析的多重比对算法。","authors":"Y Tohsato,&nbsp;H Matsuda,&nbsp;A Hashimoto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In many of the chemical reactions in living cells, enzymes act as catalysts in the conversion of certain compounds (substrates) into other compounds (products). Comparative analyses of the metabolic pathways formed by such reactions give important information on their evolution and on pharmacological targets (Dandekar et al. 1999). Each of the enzymes that constitute a pathway is classified according to the EC (Enzyme Commission) numbering system, which consists of four sets of numbers that categorize the type of the chemical reaction catalyzed. In this study, we consider that reaction similarities can be expressed by the similarities between EC numbers of the respective enzymes. Therefore, in order to find a common pattern among pathways, it is desirable to be able to use the functional hierarchy of EC numbers to express the reaction similarities. In this paper, we propose a multiple alignment algorithm utilizing information content that is extended to symbols having a hierarchical structure. The effectiveness of our method is demonstrated by applying the method to pathway analyses of sugar, DNA and amino acid metabolisms.</p>","PeriodicalId":79420,"journal":{"name":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy.\",\"authors\":\"Y Tohsato,&nbsp;H Matsuda,&nbsp;A Hashimoto\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many of the chemical reactions in living cells, enzymes act as catalysts in the conversion of certain compounds (substrates) into other compounds (products). Comparative analyses of the metabolic pathways formed by such reactions give important information on their evolution and on pharmacological targets (Dandekar et al. 1999). Each of the enzymes that constitute a pathway is classified according to the EC (Enzyme Commission) numbering system, which consists of four sets of numbers that categorize the type of the chemical reaction catalyzed. In this study, we consider that reaction similarities can be expressed by the similarities between EC numbers of the respective enzymes. Therefore, in order to find a common pattern among pathways, it is desirable to be able to use the functional hierarchy of EC numbers to express the reaction similarities. In this paper, we propose a multiple alignment algorithm utilizing information content that is extended to symbols having a hierarchical structure. The effectiveness of our method is demonstrated by applying the method to pathway analyses of sugar, DNA and amino acid metabolisms.</p>\",\"PeriodicalId\":79420,\"journal\":{\"name\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Intelligent Systems for Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在活细胞中的许多化学反应中,酶在某些化合物(底物)转化为其他化合物(产物)的过程中起催化剂的作用。对这些反应形成的代谢途径进行比较分析,可以提供有关其进化和药理靶点的重要信息(Dandekar et al. 1999)。构成途径的每种酶都根据EC(酶委员会)编号系统进行分类,该系统由四组编号组成,用于对催化的化学反应类型进行分类。在本研究中,我们认为反应的相似性可以通过各自酶的EC数的相似性来表达。因此,为了找到途径之间的共同模式,希望能够使用EC数的功能层次来表示反应的相似性。在本文中,我们提出了一种利用信息内容扩展到具有层次结构的符号的多重对齐算法。通过将该方法应用于糖、DNA和氨基酸代谢的途径分析,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy.

In many of the chemical reactions in living cells, enzymes act as catalysts in the conversion of certain compounds (substrates) into other compounds (products). Comparative analyses of the metabolic pathways formed by such reactions give important information on their evolution and on pharmacological targets (Dandekar et al. 1999). Each of the enzymes that constitute a pathway is classified according to the EC (Enzyme Commission) numbering system, which consists of four sets of numbers that categorize the type of the chemical reaction catalyzed. In this study, we consider that reaction similarities can be expressed by the similarities between EC numbers of the respective enzymes. Therefore, in order to find a common pattern among pathways, it is desirable to be able to use the functional hierarchy of EC numbers to express the reaction similarities. In this paper, we propose a multiple alignment algorithm utilizing information content that is extended to symbols having a hierarchical structure. The effectiveness of our method is demonstrated by applying the method to pathway analyses of sugar, DNA and amino acid metabolisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Mass Degeneracy in SAR by MS by Stable Isotopic Labeling Intelligent aids for parallel experiment planning and macromolecular crystallization. A practical algorithm for optimal inference of haplotypes from diploid populations. Analysis of yeast's ORF upstream regions by parallel processing, microarrays, and computational methods. Finding regulatory elements using joint likelihoods for sequence and expression profile data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1