一种检测环境水样中隐孢子虫的新型双色流式细胞术。

Cytometry Pub Date : 2000-11-01
B C Ferrari, G Vesey, K A Davis, M Gauci, D Veal
{"title":"一种检测环境水样中隐孢子虫的新型双色流式细胞术。","authors":"B C Ferrari,&nbsp;G Vesey,&nbsp;K A Davis,&nbsp;M Gauci,&nbsp;D Veal","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cryptosporidium is an important waterborne pathogen. Detection of Cryptosporidium in concentrated water samples depends on oocyst isolation using immunomagnetic separation (IMS) and/or fluorescence-activated cell sorting (FACS), followed by confirmation using immunofluorescence staining (IFA) and fluorescence microscopy. These methods require highly trained microscopists for oocyst identification and confirmation. Analysis is hampered due to the presence of autofluorescent particles coupled with particles binding nonspecifically with the monoclonal antibodies (mAbs) used for detection. Flow cytometry (FCM) has the potential to be a more specific method for oocyst detection, but such a system would require more than one selection parameter.</p><p><strong>Methods: </strong>Various mAbs from commercial suppliers were paired with CRY104-PE and evaluated. The mAb combination that best discriminated stained oocyst from detritus was optimized and compared to Cryptosporidium detection utilizing one-color IFA/FACS.</p><p><strong>Results: </strong>A highly specific two-color assay employing the IgG(1) mAb CRY104 was developed. The assay resulted in reductions, up to 20-fold, in the number of non-Cryptosporidium particles detected. The addition of a second selection parameter improved microscopic analysis times and simplified oocyst confirmation by microscopists.</p><p><strong>Conclusions: </strong>A two-color assay employing competing surface mAbs reduces the number of fluorescent particles sorted, thus improving FCM detection methods for Cryptosporidium.</p>","PeriodicalId":10947,"journal":{"name":"Cytometry","volume":"41 3","pages":"216-22"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel two-color flow cytometric assay for the detection of Cryptosporidium in environmental water samples.\",\"authors\":\"B C Ferrari,&nbsp;G Vesey,&nbsp;K A Davis,&nbsp;M Gauci,&nbsp;D Veal\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cryptosporidium is an important waterborne pathogen. Detection of Cryptosporidium in concentrated water samples depends on oocyst isolation using immunomagnetic separation (IMS) and/or fluorescence-activated cell sorting (FACS), followed by confirmation using immunofluorescence staining (IFA) and fluorescence microscopy. These methods require highly trained microscopists for oocyst identification and confirmation. Analysis is hampered due to the presence of autofluorescent particles coupled with particles binding nonspecifically with the monoclonal antibodies (mAbs) used for detection. Flow cytometry (FCM) has the potential to be a more specific method for oocyst detection, but such a system would require more than one selection parameter.</p><p><strong>Methods: </strong>Various mAbs from commercial suppliers were paired with CRY104-PE and evaluated. The mAb combination that best discriminated stained oocyst from detritus was optimized and compared to Cryptosporidium detection utilizing one-color IFA/FACS.</p><p><strong>Results: </strong>A highly specific two-color assay employing the IgG(1) mAb CRY104 was developed. The assay resulted in reductions, up to 20-fold, in the number of non-Cryptosporidium particles detected. The addition of a second selection parameter improved microscopic analysis times and simplified oocyst confirmation by microscopists.</p><p><strong>Conclusions: </strong>A two-color assay employing competing surface mAbs reduces the number of fluorescent particles sorted, thus improving FCM detection methods for Cryptosporidium.</p>\",\"PeriodicalId\":10947,\"journal\":{\"name\":\"Cytometry\",\"volume\":\"41 3\",\"pages\":\"216-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:隐孢子虫是一种重要的水媒病原体。浓缩水样中隐孢子虫的检测依赖于使用免疫磁分离(IMS)和/或荧光活化细胞分选(FACS)分离卵囊,然后使用免疫荧光染色(IFA)和荧光显微镜进行确认。这些方法需要训练有素的显微镜来鉴定和确认卵囊。由于存在与用于检测的单克隆抗体(mab)非特异性结合的自身荧光颗粒偶联的颗粒,分析受到阻碍。流式细胞术(FCM)有可能成为一种更具体的卵囊检测方法,但这种系统需要多个选择参数。方法:将来自商业供应商的各种单克隆抗体与CRY104-PE配对并进行评估。优化最佳鉴别腐质染色卵囊的单抗组合,并与单色IFA/FACS检测隐孢子虫进行比较。结果:采用IgG(1) mAb CRY104建立了一种高特异性双色检测方法。该分析导致减少,高达20倍,在非隐孢子虫颗粒的数量检测。第二个选择参数的增加提高了显微镜分析的时间,简化了显微镜对卵囊的确认。结论:采用竞争表面单克隆抗体的双色检测减少了荧光颗粒的分选数量,从而改进了隐孢子虫的FCM检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel two-color flow cytometric assay for the detection of Cryptosporidium in environmental water samples.

Background: Cryptosporidium is an important waterborne pathogen. Detection of Cryptosporidium in concentrated water samples depends on oocyst isolation using immunomagnetic separation (IMS) and/or fluorescence-activated cell sorting (FACS), followed by confirmation using immunofluorescence staining (IFA) and fluorescence microscopy. These methods require highly trained microscopists for oocyst identification and confirmation. Analysis is hampered due to the presence of autofluorescent particles coupled with particles binding nonspecifically with the monoclonal antibodies (mAbs) used for detection. Flow cytometry (FCM) has the potential to be a more specific method for oocyst detection, but such a system would require more than one selection parameter.

Methods: Various mAbs from commercial suppliers were paired with CRY104-PE and evaluated. The mAb combination that best discriminated stained oocyst from detritus was optimized and compared to Cryptosporidium detection utilizing one-color IFA/FACS.

Results: A highly specific two-color assay employing the IgG(1) mAb CRY104 was developed. The assay resulted in reductions, up to 20-fold, in the number of non-Cryptosporidium particles detected. The addition of a second selection parameter improved microscopic analysis times and simplified oocyst confirmation by microscopists.

Conclusions: A two-color assay employing competing surface mAbs reduces the number of fluorescent particles sorted, thus improving FCM detection methods for Cryptosporidium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NASA/American Cancer Society High-Resolution Flow Cytometry Project - II. Effect of pH and DAPI concentration on dual parametric analysis of DNA/DAPI fluorescence and electronic nuclear volume. Cell analysis system based on immunomagnetic cell selection and alignment followed by immunofluorescent analysis using compact disk technologies. Caffeine dissociates complexes between DNA and intercalating dyes: application for bleaching fluorochrome-stained cells for their subsequent restaining and analysis by laser scanning cytometry. Characterization of cytokine interactions by flow cytometry and factorial analysis. Multiparameter analysis of human epithelial tumor cell lines by laser scanning cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1