研究高糖浓度对蟾蜍胚和幼虫生长和酶活性影响的有效模型

Flavio Francini , Mariana Picasso , Oscar R Rebolledo , Alfredo Salibián , Juan José Gagliardino
{"title":"研究高糖浓度对蟾蜍胚和幼虫生长和酶活性影响的有效模型","authors":"Flavio Francini ,&nbsp;Mariana Picasso ,&nbsp;Oscar R Rebolledo ,&nbsp;Alfredo Salibián ,&nbsp;Juan José Gagliardino","doi":"10.1016/S0742-8413(00)00115-8","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was to develop an oviparous model suitable for studying the differential effects and mechanisms by which a high concentration of extracellular glucose and other sugars produce diabetes complications, particularly body growth retardation during development. Hence, we studied the experimental conditions necessary to obtain measurable effects of high sugar concentrations (5-mM glucose, mannitol, fructose and galactose) upon body growth and development of <em>Bufo arenarum</em> embryos and larvae, and upon the activity of aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and alkaline phosphatase (APP). Unfed animals kept in glucose showed lower body weight than controls at all stages, a condition only observed at stage 26 for animals kept in galactose and fructose. All animals reached the same stage of development regardless of the solution in which they were kept. Glucose and fructose significantly decreased the activity of all enzymes tested, while galactose only affected GGT activity. The model provides the first experimental evidence for the deleterious effect exerted in vivo by different sugars upon developing embryos and larvaes of <em>Bufo arenarum</em>. The results prove that this model might help to elucidate the effects and the pathogenic mechanisms of hyperglycemia upon growth and development of embryos exposed to environments with high sugar concentrations. It might also become a useful tool for testing the effectiveness of drugs designed to prevent the deleterious effect of such exposure.</p></div>","PeriodicalId":10586,"journal":{"name":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00115-8","citationCount":"1","resultStr":"{\"title\":\"A useful model to study the effect of high sugar concentrations upon growth and enzymic activities of toad embryos and larvae\",\"authors\":\"Flavio Francini ,&nbsp;Mariana Picasso ,&nbsp;Oscar R Rebolledo ,&nbsp;Alfredo Salibián ,&nbsp;Juan José Gagliardino\",\"doi\":\"10.1016/S0742-8413(00)00115-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study was to develop an oviparous model suitable for studying the differential effects and mechanisms by which a high concentration of extracellular glucose and other sugars produce diabetes complications, particularly body growth retardation during development. Hence, we studied the experimental conditions necessary to obtain measurable effects of high sugar concentrations (5-mM glucose, mannitol, fructose and galactose) upon body growth and development of <em>Bufo arenarum</em> embryos and larvae, and upon the activity of aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and alkaline phosphatase (APP). Unfed animals kept in glucose showed lower body weight than controls at all stages, a condition only observed at stage 26 for animals kept in galactose and fructose. All animals reached the same stage of development regardless of the solution in which they were kept. Glucose and fructose significantly decreased the activity of all enzymes tested, while galactose only affected GGT activity. The model provides the first experimental evidence for the deleterious effect exerted in vivo by different sugars upon developing embryos and larvaes of <em>Bufo arenarum</em>. The results prove that this model might help to elucidate the effects and the pathogenic mechanisms of hyperglycemia upon growth and development of embryos exposed to environments with high sugar concentrations. It might also become a useful tool for testing the effectiveness of drugs designed to prevent the deleterious effect of such exposure.</p></div>\",\"PeriodicalId\":10586,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00115-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0742841300001158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0742841300001158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是建立一个适合于研究高浓度细胞外葡萄糖和其他糖导致糖尿病并发症,特别是发育过程中身体生长迟缓的差异效应和机制的卵生模型。因此,我们研究了高糖浓度(5-mM葡萄糖、甘露醇、果糖和半乳糖)对砂蟾胚胎和幼虫身体生长发育以及对天冬氨酸转氨酶(AST)、γ-谷氨酰转移酶(GGT)和碱性磷酸酶(APP)活性的可测量影响所需的实验条件。葡萄糖喂养的未喂食动物在所有阶段的体重都低于对照组,这种情况只在第26阶段的半乳糖和果糖喂养的动物中观察到。所有的动物都达到了相同的发育阶段,不管它们被放在什么溶液中。葡萄糖和果糖显著降低了所有酶的活性,而半乳糖仅影响GGT活性。该模型首次提供了体内不同糖对斗牛鱼胚胎和幼虫的有害影响的实验证据。结果表明,该模型可能有助于阐明高血糖对高糖环境下胚胎生长发育的影响及其致病机制。它也可能成为一种有用的工具,用于测试旨在防止这种接触的有害影响的药物的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A useful model to study the effect of high sugar concentrations upon growth and enzymic activities of toad embryos and larvae

The aim of this study was to develop an oviparous model suitable for studying the differential effects and mechanisms by which a high concentration of extracellular glucose and other sugars produce diabetes complications, particularly body growth retardation during development. Hence, we studied the experimental conditions necessary to obtain measurable effects of high sugar concentrations (5-mM glucose, mannitol, fructose and galactose) upon body growth and development of Bufo arenarum embryos and larvae, and upon the activity of aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and alkaline phosphatase (APP). Unfed animals kept in glucose showed lower body weight than controls at all stages, a condition only observed at stage 26 for animals kept in galactose and fructose. All animals reached the same stage of development regardless of the solution in which they were kept. Glucose and fructose significantly decreased the activity of all enzymes tested, while galactose only affected GGT activity. The model provides the first experimental evidence for the deleterious effect exerted in vivo by different sugars upon developing embryos and larvaes of Bufo arenarum. The results prove that this model might help to elucidate the effects and the pathogenic mechanisms of hyperglycemia upon growth and development of embryos exposed to environments with high sugar concentrations. It might also become a useful tool for testing the effectiveness of drugs designed to prevent the deleterious effect of such exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterisation of tolbutamide hydroxylase activity in the common brushtail possum, (Trichosurus vulpecula) and koala (Phascolarctos cinereus): inhibition by the Eucalyptus terpene 1,8-cineole Progesterone metabolism in the ovaries and testes of the echinoid Lytechinus variegatus Lamarck (Echinodermata) Excitatory actions of propofol and ketamine in the snail Lymnaea stagnalis Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish: specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide Thyroid hormone deiodination in tissues of American plaice, Hippoglossoides platessoides: characterization and short-term responses to polychlorinated biphenyls (PCBs) 77 and 126
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1