R B Gilchrist, D B Rowe, L J Ritter, S A Robertson, R J Norman, D T Armstrong
{"title":"粒细胞-巨噬细胞集落刺激因子缺乏对卵巢滤泡细胞功能的影响。","authors":"R B Gilchrist, D B Rowe, L J Ritter, S A Robertson, R J Norman, D T Armstrong","doi":"10.1530/jrf.0.1200283","DOIUrl":null,"url":null,"abstract":"<p><p>Granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine secreted by lymphohaemopoietic and other cell lineages, is known to influence ovarian cyclicity and embryo development. The aim of this study was to examine the effect of GM-CSF on ovarian follicular cell function using GM-CSF-deficient (GM -/-) mice. Immature GM -/- and GM +/+ mice were stimulated with eCG, and cumulus-oocyte complexes and mural granulosa cells were collected 48 h later. Expression of GM-CSF receptor (GM-CSFR) alpha and beta mRNA subunits by cumulus-oocyte complexes and mural granulosa cells was examined using RT-PCR. Cumulus-oocyte complexes from both genotypes were found to express mRNA for the GM-CSFRalpha-subunit only, while the mural granulosa cells expressed both the alpha and beta receptor subunits. Cumulus-oocyte complexes recovered from GM -/- mice had approximately twice the number of cumulus cells per cumulus-oocyte complex than did those of GM +/+ mice (P < 0.05), even though the growth-promoting activity of denuded GM -/- oocytes was found to be equivalent to that of wild-type oocytes. GM-CSF deficiency was associated with marginally increased DNA synthesis in cumulus cells and significantly (P < 0.05) lower progesterone production by mural granulosa cells recovered from GM -/- compared with those recovered from GM +/+ mice. The addition of rec-mGM-CSF in vitro did not affect DNA synthesis in either cell type or progesterone production by mural granulosa cells, irrespective of GM-CSF status. There was no effect of GM-CSF deficiency on the capacity of FSH and insulin-like growth factor I to stimulate DNA synthesis in cumulus-oocyte complexes (approximately 15- and threefold, respectively) and in mural granulosa cells (approximately two- and threefold, respectively). Taken together, these data show that GM-CSF influences events associated with follicular maturation in mice. The effects of GM-CSF are not exerted directly in granulosa or cumulus cells, but appear to be mediated indirectly, perhaps through the agency of steroidogenesis-regulating secretions of local macrophage populations residing in the theca.</p>","PeriodicalId":16957,"journal":{"name":"Journal of reproduction and fertility","volume":"120 2","pages":"283-92"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1530/jrf.0.1200283","citationCount":"21","resultStr":"{\"title\":\"Effect of granulocyte-macrophage colony-stimulating factor deficiency on ovarian follicular cell function.\",\"authors\":\"R B Gilchrist, D B Rowe, L J Ritter, S A Robertson, R J Norman, D T Armstrong\",\"doi\":\"10.1530/jrf.0.1200283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine secreted by lymphohaemopoietic and other cell lineages, is known to influence ovarian cyclicity and embryo development. The aim of this study was to examine the effect of GM-CSF on ovarian follicular cell function using GM-CSF-deficient (GM -/-) mice. Immature GM -/- and GM +/+ mice were stimulated with eCG, and cumulus-oocyte complexes and mural granulosa cells were collected 48 h later. Expression of GM-CSF receptor (GM-CSFR) alpha and beta mRNA subunits by cumulus-oocyte complexes and mural granulosa cells was examined using RT-PCR. Cumulus-oocyte complexes from both genotypes were found to express mRNA for the GM-CSFRalpha-subunit only, while the mural granulosa cells expressed both the alpha and beta receptor subunits. Cumulus-oocyte complexes recovered from GM -/- mice had approximately twice the number of cumulus cells per cumulus-oocyte complex than did those of GM +/+ mice (P < 0.05), even though the growth-promoting activity of denuded GM -/- oocytes was found to be equivalent to that of wild-type oocytes. GM-CSF deficiency was associated with marginally increased DNA synthesis in cumulus cells and significantly (P < 0.05) lower progesterone production by mural granulosa cells recovered from GM -/- compared with those recovered from GM +/+ mice. The addition of rec-mGM-CSF in vitro did not affect DNA synthesis in either cell type or progesterone production by mural granulosa cells, irrespective of GM-CSF status. There was no effect of GM-CSF deficiency on the capacity of FSH and insulin-like growth factor I to stimulate DNA synthesis in cumulus-oocyte complexes (approximately 15- and threefold, respectively) and in mural granulosa cells (approximately two- and threefold, respectively). Taken together, these data show that GM-CSF influences events associated with follicular maturation in mice. The effects of GM-CSF are not exerted directly in granulosa or cumulus cells, but appear to be mediated indirectly, perhaps through the agency of steroidogenesis-regulating secretions of local macrophage populations residing in the theca.</p>\",\"PeriodicalId\":16957,\"journal\":{\"name\":\"Journal of reproduction and fertility\",\"volume\":\"120 2\",\"pages\":\"283-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1530/jrf.0.1200283\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of reproduction and fertility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1530/jrf.0.1200283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of reproduction and fertility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/jrf.0.1200283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of granulocyte-macrophage colony-stimulating factor deficiency on ovarian follicular cell function.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine secreted by lymphohaemopoietic and other cell lineages, is known to influence ovarian cyclicity and embryo development. The aim of this study was to examine the effect of GM-CSF on ovarian follicular cell function using GM-CSF-deficient (GM -/-) mice. Immature GM -/- and GM +/+ mice were stimulated with eCG, and cumulus-oocyte complexes and mural granulosa cells were collected 48 h later. Expression of GM-CSF receptor (GM-CSFR) alpha and beta mRNA subunits by cumulus-oocyte complexes and mural granulosa cells was examined using RT-PCR. Cumulus-oocyte complexes from both genotypes were found to express mRNA for the GM-CSFRalpha-subunit only, while the mural granulosa cells expressed both the alpha and beta receptor subunits. Cumulus-oocyte complexes recovered from GM -/- mice had approximately twice the number of cumulus cells per cumulus-oocyte complex than did those of GM +/+ mice (P < 0.05), even though the growth-promoting activity of denuded GM -/- oocytes was found to be equivalent to that of wild-type oocytes. GM-CSF deficiency was associated with marginally increased DNA synthesis in cumulus cells and significantly (P < 0.05) lower progesterone production by mural granulosa cells recovered from GM -/- compared with those recovered from GM +/+ mice. The addition of rec-mGM-CSF in vitro did not affect DNA synthesis in either cell type or progesterone production by mural granulosa cells, irrespective of GM-CSF status. There was no effect of GM-CSF deficiency on the capacity of FSH and insulin-like growth factor I to stimulate DNA synthesis in cumulus-oocyte complexes (approximately 15- and threefold, respectively) and in mural granulosa cells (approximately two- and threefold, respectively). Taken together, these data show that GM-CSF influences events associated with follicular maturation in mice. The effects of GM-CSF are not exerted directly in granulosa or cumulus cells, but appear to be mediated indirectly, perhaps through the agency of steroidogenesis-regulating secretions of local macrophage populations residing in the theca.