前列腺的磁共振光谱研究。

Molecular urology Pub Date : 2000-01-01
J A Koutcher, K Zakian, H Hricak
{"title":"前列腺的磁共振光谱研究。","authors":"J A Koutcher,&nbsp;K Zakian,&nbsp;H Hricak","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Since the first suggested use of nuclear magnetic resonance (NMR) for detecting cancer, followed by the demonstration of the feasibility of imaging based on the NMR signal in 1973, magnetic resonance imaging (MRI) has become the modality of choice for a variety of clinical applications. Subsequently, the use of NMR spectroscopy (MRS) to detect the presence of different metabolites in vivo has provided unique opportunities for obtaining physiological and biochemical information. More recently, improvements in NMR equipment (magnet, electronics, computers, gradients coils, radiofrequency coils) and pulse sequences (software) have further improved these capabilities. The distinctions between MRI and MRS have begun to blur as new techniques emerge that combine imaging and spectroscopy, generating MRS images of a variety of metabolites. This review provides a brief overview of recent developments in MRS studies pertinent to the clinical evaluation of prostate cancer. The paper has been divided into three parts: a brief qualitative theoretical section about MRS, a review of in vitro studies, and a discussion of the clinical studies of the human prostate.</p>","PeriodicalId":80296,"journal":{"name":"Molecular urology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic resonance spectroscopic studies of the prostate.\",\"authors\":\"J A Koutcher,&nbsp;K Zakian,&nbsp;H Hricak\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the first suggested use of nuclear magnetic resonance (NMR) for detecting cancer, followed by the demonstration of the feasibility of imaging based on the NMR signal in 1973, magnetic resonance imaging (MRI) has become the modality of choice for a variety of clinical applications. Subsequently, the use of NMR spectroscopy (MRS) to detect the presence of different metabolites in vivo has provided unique opportunities for obtaining physiological and biochemical information. More recently, improvements in NMR equipment (magnet, electronics, computers, gradients coils, radiofrequency coils) and pulse sequences (software) have further improved these capabilities. The distinctions between MRI and MRS have begun to blur as new techniques emerge that combine imaging and spectroscopy, generating MRS images of a variety of metabolites. This review provides a brief overview of recent developments in MRS studies pertinent to the clinical evaluation of prostate cancer. The paper has been divided into three parts: a brief qualitative theoretical section about MRS, a review of in vitro studies, and a discussion of the clinical studies of the human prostate.</p>\",\"PeriodicalId\":80296,\"journal\":{\"name\":\"Molecular urology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular urology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular urology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自1973年首次提出使用核磁共振(NMR)检测癌症以来,随后证明了基于核磁共振信号成像的可行性,磁共振成像(MRI)已成为各种临床应用的首选方式。随后,使用核磁共振波谱(MRS)来检测体内不同代谢物的存在为获得生理和生化信息提供了独特的机会。最近,核磁共振设备(磁铁,电子,计算机,梯度线圈,射频线圈)和脉冲序列(软件)的改进进一步提高了这些能力。随着结合成像和光谱学的新技术的出现,MRI和MRS之间的区别已经开始变得模糊,这些新技术可以产生各种代谢物的MRS图像。本文综述了与前列腺癌临床评价相关的MRS研究的最新进展。本文分为三个部分:关于MRS的简短定性理论部分,体外研究的回顾,以及对人类前列腺临床研究的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic resonance spectroscopic studies of the prostate.

Since the first suggested use of nuclear magnetic resonance (NMR) for detecting cancer, followed by the demonstration of the feasibility of imaging based on the NMR signal in 1973, magnetic resonance imaging (MRI) has become the modality of choice for a variety of clinical applications. Subsequently, the use of NMR spectroscopy (MRS) to detect the presence of different metabolites in vivo has provided unique opportunities for obtaining physiological and biochemical information. More recently, improvements in NMR equipment (magnet, electronics, computers, gradients coils, radiofrequency coils) and pulse sequences (software) have further improved these capabilities. The distinctions between MRI and MRS have begun to blur as new techniques emerge that combine imaging and spectroscopy, generating MRS images of a variety of metabolites. This review provides a brief overview of recent developments in MRS studies pertinent to the clinical evaluation of prostate cancer. The paper has been divided into three parts: a brief qualitative theoretical section about MRS, a review of in vitro studies, and a discussion of the clinical studies of the human prostate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Farewell and Thank You Neural computation in urology: an orientation. Genetic adaptive neural network to predict biochemical failure after radical prostatectomy: a multi-institutional study. Predictive modeling techniques in prostate cancer. Application of Cre-loxP system to the urinary tract and cancer gene therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1