含铅颗粒从围墙中释放出来。

J Harney, M Trunov, S Grinshpun, K Willeke, K Choe, S Trakumas, W Friedman
{"title":"含铅颗粒从围墙中释放出来。","authors":"J Harney,&nbsp;M Trunov,&nbsp;S Grinshpun,&nbsp;K Willeke,&nbsp;K Choe,&nbsp;S Trakumas,&nbsp;W Friedman","doi":"10.1080/15298660008984586","DOIUrl":null,"url":null,"abstract":"<p><p>The 1995 Department of Housing and Urban Development (HUD) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing discusses using interior and exterior wall enclosures for lead hazard control. Leaded dust may be aerosolized inside enclosures and released through gaps and cracks into a room. The effects of airflow and mechanical disturbances on dust release were studied using a laboratory wall enclosure model with dust collected from homes with lead-based paint hazards. Airflows relevant to residences were blown down the enclosure and out a 4-, 6-, or 8-mm horizontal gap at its bottom, simulating potential enclosure failure. Then, low-frequency mechanical vibrations also were applied to the enclosure. No significant dust release was found when blowing air down the enclosure even at 37 cm/sec (representing extremely high flow); release occurred only with this high flow and 3 Hz mechanical disturbances. Dust was released primarily from the floor area immediately adjacent to the enclosure gap; the release rate fluctuated over time. Most dust initially settled near the enclosure. Dust release for 1 hour at extreme conditions (high airflow with vibration) yields lead loading above the 1995 HUD clearance level of 100 microg/ft2 only within 3-4 cm of the wall; for the HUD standard (1 ft2) sampling area, the lead loading does not exceed 30 microg/ ft2. Redistributing dust over the room's 16 m2 floor space yields average extreme-condition loading rate of 2 microg/ft2/hour. At less-than-extreme conditions, dust would have to be released for years without cleaning to yield a hazard.</p>","PeriodicalId":7449,"journal":{"name":"AIHAJ : a journal for the science of occupational and environmental health and safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15298660008984586","citationCount":"8","resultStr":"{\"title\":\"Release of lead-containing particles from a wall enclosure.\",\"authors\":\"J Harney,&nbsp;M Trunov,&nbsp;S Grinshpun,&nbsp;K Willeke,&nbsp;K Choe,&nbsp;S Trakumas,&nbsp;W Friedman\",\"doi\":\"10.1080/15298660008984586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 1995 Department of Housing and Urban Development (HUD) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing discusses using interior and exterior wall enclosures for lead hazard control. Leaded dust may be aerosolized inside enclosures and released through gaps and cracks into a room. The effects of airflow and mechanical disturbances on dust release were studied using a laboratory wall enclosure model with dust collected from homes with lead-based paint hazards. Airflows relevant to residences were blown down the enclosure and out a 4-, 6-, or 8-mm horizontal gap at its bottom, simulating potential enclosure failure. Then, low-frequency mechanical vibrations also were applied to the enclosure. No significant dust release was found when blowing air down the enclosure even at 37 cm/sec (representing extremely high flow); release occurred only with this high flow and 3 Hz mechanical disturbances. Dust was released primarily from the floor area immediately adjacent to the enclosure gap; the release rate fluctuated over time. Most dust initially settled near the enclosure. Dust release for 1 hour at extreme conditions (high airflow with vibration) yields lead loading above the 1995 HUD clearance level of 100 microg/ft2 only within 3-4 cm of the wall; for the HUD standard (1 ft2) sampling area, the lead loading does not exceed 30 microg/ ft2. Redistributing dust over the room's 16 m2 floor space yields average extreme-condition loading rate of 2 microg/ft2/hour. At less-than-extreme conditions, dust would have to be released for years without cleaning to yield a hazard.</p>\",\"PeriodicalId\":7449,\"journal\":{\"name\":\"AIHAJ : a journal for the science of occupational and environmental health and safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15298660008984586\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIHAJ : a journal for the science of occupational and environmental health and safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15298660008984586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIHAJ : a journal for the science of occupational and environmental health and safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15298660008984586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

1995年住房和城市发展部(HUD)关于评估和控制住房中含铅涂料危害的指导方针讨论了使用内墙和外墙外壳来控制铅危害。含铅粉尘可能在外壳内雾化,并通过缝隙和裂缝释放到房间内。采用室内墙体封闭模型,研究了气流和机械扰动对粉尘释放的影响。与住宅相关的气流被吹下外壳,并在其底部产生4、6或8毫米的水平间隙,模拟潜在的外壳故障。然后,低频机械振动也应用于外壳。即使以37厘米/秒的速度(极高的流量)向外壳吹气,也没有发现明显的粉尘释放;释放只发生在高流量和3hz机械扰动下。灰尘主要是从紧挨着封闭缝隙的地板上释放出来的;释放率随时间波动。大多数灰尘最初都落在围栏附近。粉尘在极端条件下释放1小时(高气流与振动)产生铅负荷高于1995年HUD间隙水平100微克/平方英尺,仅在3-4厘米的墙壁内;对于HUD标准(1 ft2)采样区域,铅负荷不超过30微克/ ft2。在房间16平方米的面积上重新分配灰尘,平均极端条件加载率为2微克/平方英尺/小时。在不太极端的条件下,灰尘必须在不清洁的情况下释放数年才能产生危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Release of lead-containing particles from a wall enclosure.

The 1995 Department of Housing and Urban Development (HUD) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing discusses using interior and exterior wall enclosures for lead hazard control. Leaded dust may be aerosolized inside enclosures and released through gaps and cracks into a room. The effects of airflow and mechanical disturbances on dust release were studied using a laboratory wall enclosure model with dust collected from homes with lead-based paint hazards. Airflows relevant to residences were blown down the enclosure and out a 4-, 6-, or 8-mm horizontal gap at its bottom, simulating potential enclosure failure. Then, low-frequency mechanical vibrations also were applied to the enclosure. No significant dust release was found when blowing air down the enclosure even at 37 cm/sec (representing extremely high flow); release occurred only with this high flow and 3 Hz mechanical disturbances. Dust was released primarily from the floor area immediately adjacent to the enclosure gap; the release rate fluctuated over time. Most dust initially settled near the enclosure. Dust release for 1 hour at extreme conditions (high airflow with vibration) yields lead loading above the 1995 HUD clearance level of 100 microg/ft2 only within 3-4 cm of the wall; for the HUD standard (1 ft2) sampling area, the lead loading does not exceed 30 microg/ ft2. Redistributing dust over the room's 16 m2 floor space yields average extreme-condition loading rate of 2 microg/ft2/hour. At less-than-extreme conditions, dust would have to be released for years without cleaning to yield a hazard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approaches and considerations for setting occupational exposure limits for sensory irritants: report of recent symposia. Approach to setting occupational exposure limits for sensory irritants in The Netherlands. The origin of a nicotine detection method. Telephone communications with several commercial respirators. Replotting data for chronic beryllium disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1