藻类来源毒素的报告基因检测。

E R Fairey, J S Ramsdell
{"title":"藻类来源毒素的报告基因检测。","authors":"E R Fairey,&nbsp;J S Ramsdell","doi":"10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e","DOIUrl":null,"url":null,"abstract":"<p><p>We have modified the cell-based directed cytotoxicity assay for sodium channel and calcium channel active phycotoxins using a c-fos-luciferase reporter gene construct. In this report we describe the conceptual basis to the development of reporter gene assays for algal-derived toxins and summarize both published and unpublished data using this method. N2A mouse neuroblastoma cells, which express voltage-dependent sodium channels, were stably transfected with the reporter gene c-fos-luc, which contains the firefly luciferase gene under the transcriptional regulation of the human c-fos response element. The characteristics of the N2A reporter gene assay were determined by dose response with brevetoxin and ciguatoxin. Brevetoxin-1 and ciguatoxin-1 induced c-fos-luc with an EC50 of 4.6 and 3.0 ng ml(-1), respectively. Saxitoxin caused a concentration-dependent inhibition of brevetoxin-1 induction of c-fos-luc with an EC50 of 3.5 ng ml(-1). GH4C1 rat pituitary cells, which lack voltage-dependent sodium channels but express voltage-dependent calcium channels, were also stably transfected with the c-fos-luc. GH4C1 cells expressing c-fos-luciferase were responsive to maitotoxin (1 ng ml(-1)) and a putative toxin produced by Pfiesteria piscicida. Although reporter gene assays are not designed to replace existing detection methods used to measure toxin activity in seafood, they do provide a valuable means to screen algal cultures for toxin activity, to conduct assay-guided fractionation and to characterize pharmacologic properties of algal toxins.</p>","PeriodicalId":18777,"journal":{"name":"Natural toxins","volume":"7 6","pages":"415-21"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e","citationCount":"18","resultStr":"{\"title\":\"Reporter gene assays for algal-derived toxins.\",\"authors\":\"E R Fairey,&nbsp;J S Ramsdell\",\"doi\":\"10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have modified the cell-based directed cytotoxicity assay for sodium channel and calcium channel active phycotoxins using a c-fos-luciferase reporter gene construct. In this report we describe the conceptual basis to the development of reporter gene assays for algal-derived toxins and summarize both published and unpublished data using this method. N2A mouse neuroblastoma cells, which express voltage-dependent sodium channels, were stably transfected with the reporter gene c-fos-luc, which contains the firefly luciferase gene under the transcriptional regulation of the human c-fos response element. The characteristics of the N2A reporter gene assay were determined by dose response with brevetoxin and ciguatoxin. Brevetoxin-1 and ciguatoxin-1 induced c-fos-luc with an EC50 of 4.6 and 3.0 ng ml(-1), respectively. Saxitoxin caused a concentration-dependent inhibition of brevetoxin-1 induction of c-fos-luc with an EC50 of 3.5 ng ml(-1). GH4C1 rat pituitary cells, which lack voltage-dependent sodium channels but express voltage-dependent calcium channels, were also stably transfected with the c-fos-luc. GH4C1 cells expressing c-fos-luciferase were responsive to maitotoxin (1 ng ml(-1)) and a putative toxin produced by Pfiesteria piscicida. Although reporter gene assays are not designed to replace existing detection methods used to measure toxin activity in seafood, they do provide a valuable means to screen algal cultures for toxin activity, to conduct assay-guided fractionation and to characterize pharmacologic properties of algal toxins.</p>\",\"PeriodicalId\":18777,\"journal\":{\"name\":\"Natural toxins\",\"volume\":\"7 6\",\"pages\":\"415-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural toxins\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural toxins","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们使用c-fos荧光素酶报告基因结构修改了基于细胞的钠通道和钙通道活性藻毒素的定向细胞毒性试验。在这篇报告中,我们描述了发展报告基因检测藻类毒素的概念基础,并总结了使用这种方法发表和未发表的数据。将表达电压依赖性钠离子通道的N2A小鼠神经母细胞瘤细胞稳定转染报告基因c-fos-luc,该基因含有受人c-fos反应元件转录调控的萤火虫荧光素酶基因。采用短叶毒素和雪卡毒素剂量反应法测定N2A报告基因试验的特点。Brevetoxin-1和ciguatoxin-1诱导c-fos-luc的EC50分别为4.6和3.0 ng ml(-1)。石笋毒素对brevetoxin-1诱导的c-fos-luc的抑制作用呈浓度依赖性,EC50为3.5 ng ml(-1)。缺乏电压依赖性钠通道但表达电压依赖性钙通道的GH4C1大鼠垂体细胞也被c-fos-luc稳定转染。表达c-fos荧光素酶的GH4C1细胞对maitotoxin (1 ng ml(-1))和Pfiesteria piscicida产生的一种推定毒素有反应。虽然报告基因检测并不是为了取代现有的用于测量海产品毒素活性的检测方法而设计的,但它们确实提供了一种有价值的手段来筛选藻类培养物的毒素活性,进行检测指导的分离,并表征藻类毒素的药理学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reporter gene assays for algal-derived toxins.

We have modified the cell-based directed cytotoxicity assay for sodium channel and calcium channel active phycotoxins using a c-fos-luciferase reporter gene construct. In this report we describe the conceptual basis to the development of reporter gene assays for algal-derived toxins and summarize both published and unpublished data using this method. N2A mouse neuroblastoma cells, which express voltage-dependent sodium channels, were stably transfected with the reporter gene c-fos-luc, which contains the firefly luciferase gene under the transcriptional regulation of the human c-fos response element. The characteristics of the N2A reporter gene assay were determined by dose response with brevetoxin and ciguatoxin. Brevetoxin-1 and ciguatoxin-1 induced c-fos-luc with an EC50 of 4.6 and 3.0 ng ml(-1), respectively. Saxitoxin caused a concentration-dependent inhibition of brevetoxin-1 induction of c-fos-luc with an EC50 of 3.5 ng ml(-1). GH4C1 rat pituitary cells, which lack voltage-dependent sodium channels but express voltage-dependent calcium channels, were also stably transfected with the c-fos-luc. GH4C1 cells expressing c-fos-luciferase were responsive to maitotoxin (1 ng ml(-1)) and a putative toxin produced by Pfiesteria piscicida. Although reporter gene assays are not designed to replace existing detection methods used to measure toxin activity in seafood, they do provide a valuable means to screen algal cultures for toxin activity, to conduct assay-guided fractionation and to characterize pharmacologic properties of algal toxins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: Alfonso D, Johnson HA, Colman-Saizarbitoria T, Presley CP, McCabe GP, McLaughlin JL (1996): SARs of annonaceous acetogenins in rat liver mitochondria. Nat Toxins 4:181-188. Advances in detection methods for fungal and algal toxins. HPLC/MS analysis of fusarium mycotoxins, fumonisins and deoxynivalenol. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)). A new type sandwich immunoassay for microcystin: production of monoclonal antibodies specific to the immune complex formed by microcystin and an anti-microcystin monoclonal antibody.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1